Пайка сварочных швов в короткие сроки. Сварка-пайка высокопрочных сталей

21.09.2023

Операции пайки достаточно распространены не только в профессиональных сферах на производстве и в строительстве, но и в быту. Их используют для получения межатомных между небольшими деталями и элементами. Существуют разные виды пайки, отличающиеся технологическими нюансами, применяемыми расходными материалами, заготовками и т.д.

Общие сведения о технологии

Это метод соединения, при котором задействуется связующий расплав (припой) с подходящими для конкретных условий характеристиками. И активный элемент пайки, и заготовки подвергаются предварительному нагреву, благодаря которому формируется податливая для соединения структура материалов. Температурный режим должен быть превосходить пиковую точку нагрева, минуя которую металлические детали размягчаются и начинают переход в жидкое состояние. Важной характеристикой любого вида пайки является время термического воздействия под расплавом. Это промежуток от начала нагрева до отвердения припоя уже после выполнения соединения. В среднем операция занимает 5-7 мин, но могут быть и отклонения от этого диапазона - это зависит от характеристик заготовки и площади обрабатываемого узла.

Лампы для пайки

Наиболее распространенный инструмент для пайки различных заготовок, позволяющий получать высокотемпературный нагрев путем сжигания спирта, керосина и других видов жидкого топлива. В процессе работы из сопла аппарата вырывается факельный запал, который в дальнейшем направляется на целевой участок расплава. Такие приборы можно использовать не только для соединения деталей, но и в операциях нагрева конструкций и механизмов. Также аппараты для пайки используют перед удалением лакокрасочных покрытий. Средняя температура нагрева у лампового паяльника составляет 1000 - 1100°С, поэтому его можно использовать и в сварочных работах. К самым производительным моделям относятся бензиновые лампы. Они быстро обретают оптимальную рабочую температуру и справляются с большинством стандартных операций пайки. В конструкции приборов предусматривается баллончик для топлива, а также регулятор пламени, позволяющий варьировать мощность термического воздействия.

Горелки для пайки

Широкая группа газовых паяльников, которые могут подключаться к баллончику с топливом или же к центральному источнику с горючим. Первый вариант снабжения имеет преимущество в виде автономности. Горелку с баллончиком, как и можно использовать независимо от внешних коммуникаций. В выборе такого аппарата следует учитывать мощность, рабочую температуру, тип применяемого газа, время готовности к работе и т.д. Например, стандартная газовая горелка для пайки работает на пропан-бутане и достигает температуры нагрева до 1300°С. Период непрерывного термического воздействия может достигать 3 ч, но это время будет зависеть и от объема подключаемого баллончика. Различают горелки и по типу системы воспламенения. Простейшие модели включаются механическим способом, а в более современных модификациях применяется пьезорозжиг.

Электрические паяльники

Тоже распространенный в бытовой среде вид паяльного оборудования, которое отличается безопасностью (по сравнению с газовыми аппаратами) и компактными размерами. Но сразу стоит подчеркнуть и недостатки. Во-первых, такие приборы зависимы от электросети, что ограничивает их сферы применения. Во-вторых, электрическое паяльное оборудование поддерживает невысокую температуру нагрева в диапазоне 400 - 450°С. Связано это с тем, что часть энергии утрачивается в процессе преобразования электричества в теплоту.

В выборе устройства надо учитывать максимальное напряжение. Так, в мастерских и на производствах используют стандартные модели на 220 В. В бытовых условиях нередко применяют аппараты, работающие от трансформаторов на 12 и 24 В. Задачи, которые можно решать электрическими паяльниками, в основном ограничиваются починкой мелкой аппаратуры, восстановлением контактов микросхем, соединением пластиковых деталей и т.д.

Паяльные станции

Для выполнения групповых или поточных операций пайки используется многофункциональное оборудование. Паяльная станция отличается широкими возможностями регулировки рабочих параметров, а также более высокими температурными показателями нагрева. Достаточно сказать, что приборы такого типа работают при мощности 750 - 1000 Вт, подключаясь к сетям с напряжением 220 В. Как правило, это профессиональное паяльное оборудование, но существуют и аналоги бытового назначения. Например, аппараты для групповых операций в домашних условиях могут включать несколько сменных жал разного формата, подставки, средства для удаления припоя, кусачки и другие вспомогательные аксессуары. Теперь стоит ознакомиться с разными технологическими подходами к процессам пайки.

Основные виды пайки

Различают техники выполнения операций по стыку и зазору. Так, если промежуток между соединяемыми элементами составляет менее 0,5 мм, то пайка будет с зазором. Превышение этого интервала означает, что соединение выполняется встык. Причем и стыки могут иметь разные конфигурации - например, X- и V-образные. Пайка с зазором производится только с жидким припоем, который в процессе работы направляется в промежуточную зону. пайки встык предполагают заполнение свободного пространства припоем под влиянием силы тяжести.

Классификация пайки по температурным режимам

На сегодняшний день применяют мягкую, твердую и высокотемпературную пайку, которая используется в основном на производствах и в строительстве. Первые же две техники во многом схожи - например, в обоих случаях рабочая температура составляет 450°С и ниже. Для сравнения, высокотемпературные соединения выполняются в режиме не менее 600°С, а чаще - выше 900°С.

При этом и низкотемпературная обработка может обеспечить качественное соединение. Наиболее выигрышным будет применение твердого припоя, благодаря которому достигается высокая прочность и тугоплавкость деталей. Добавление меди в зазор или стык будет способствовать и повышению ковкости заготовки. Если же требуется получить гибкую и упругую структуру, то используют мягкую пайку.

Классификация припоев

Условно можно разделить современные припои на две группы:

  • Плавящиеся под низкими температурами.
  • Плавящиеся под высокими температурами.

Как уже отмечалось, низкотемпературная пайка выполняется под 450°C и ниже. Сам припой для такого рода операций должен размягчаться уже при 300°C. К подобным материалам относят широкую группу оловянных сплавов с добавлением цинка, свинца и кадмия.

Высокотемпературные средства расплава задействуются для пайки при температурах порядка 500°C. Преимущественно это медные составы, в которые также входит никель, фосфор и цинк. Важно отметить, что, к примеру, помимо более низкой температуры плавления будет отличаться от медных сплавов и механической прочностью. Соотношение по стойкости перед физическим давлением можно представить так: 20 - 100 МПа против 100 - 500 МПа.

Виды флюсов

При термическом воздействии на поверхности металлической заготовки образуется оксидное покрытие, препятствующее образованию качественного соединения с припоем. Для устранения таких препятствий используют разные виды флюсов для пайки, некоторые из которых также ликвидируют следы ржавчины и окалины.

Флюсы можно классифицировать как раз по совместимости с припоями (твердыми и мягкими) или по температурной стойкости. Например, для мягкой пайки тяжелых металлов используют средства с маркировками F-SW11 и F-SW32. Для твердого соединения тяжелых сплавов задействуют флюсы для пайки видов F-SH1 и F-SH4. Легкие же металлы наподобие алюминия рекомендуется предварительно обрабатывать составами групп F-LH1 и F-LH2.

Метод индукционной пайки

Данная технология пайки имеет несколько преимуществ перед классическим способом соединения под расплавом. Среди них можно выделить минимальную степень окисления заготовки, что в некоторых случаях избавляет от необходимости применения флюсов, а также низкий эффект коробления. Что касается целевых материалов, то к ним относятся и мягкие, и твердые сплавы, а также керамика с пластиком. К примеру, оптимальный припой для меди в данном случае будет иметь маркировку L-SN (модификации SB5 или AG5). В качестве источника тепловой энергии при индукционном воздействии могут выступать как ручные ламповые аппараты, так и машинные агрегаты соответствующей мощности. На производствах задействуют и генераторные установки, когда нужно получить длительную спайку узлов большой площади. Также в работу включается многоместный индуктор, который может поочередно принимать заготовки. По этой технологии, в частности, изготавливают ручной режущий инструмент.

Еще один современный высокотехнологичный способ пайки, разработка которого была вызвана необходимостью устранения целого ряда характерных недостатков электрохимических методов соединения. Ключевой особенностью этой техники можно назвать возможность замены обычного флюса как средства устранения оксидов. Функцию зачистки выполняет энергия ультразвуковых волн, вызывающая процесс кавитации в жидком припое. При этом в полной мере сохраняются задачи термического связующего воздействия со стороны расплава.

Отмечается и превосходство технологии в показателях скорости соединения. Если сравнивать ультразвуковое излучение с эффектом, который дает припой олово-свинец, то интенсивность захлопывания полостей обрабатываемого узла будет выше в несколько раз. Как показывают наблюдения, ультразвуковые волны с частотой 22,8 кГц обеспечивают скорость смыкания припоя на уровне 0,2 м/с.

Есть и экономические преимущества данного метода. Они также связаны с изменением подходов к применению флюсов и припоев. На производствах электротехнических приборов при сборке монолитных конденсаторов, преобразователей тока и других устройств широко применяется металлизация пастами палладия, серебра и платины. Процесс ультразвуковой пайки позволяет заменять драгоценные металлы на более дешевые аналоги без потери в эксплуатационных качествах будущего изделия.

Особенности пайки-сварки

У пайки как таковой немало схожих черт с традиционными технологиями сварки. Также используется нагрев заготовок и сторонний материал, оказывающий влияние на формирование шва. Но, по сравнению с техниками сварки, пайка не предусматривает внутреннего расплава структуры заготовки. Края деталей, как правило, остаются твердыми, хоть и подвергаются нагреву. И все же полный расплав заготовки дает более крепкое соединение. Другое дело, что для достижения такого результата может требоваться более мощное оборудование. При использовании жидкого припоя для меди вполне реализуема некапилярная пайка с плотным заполнением шва. Данный способ соединения частично относится к сварке, так как при нем повышается сцепляемость структур двух и более заготовок. Производить некапиллярную пайку рекомендуется электродуговыми аппаратами или кислородно-ацетиленовой горелкой.

Заключение

На получение качественного соединения в процессе пайки влияет не только правильный выбор технологии, припоя с флюсом и оборудования. Зачастую решающее значение имеют мелкие организационные процедуры, связанные с подготовкой материалов и последующей обработкой. В частности, для использования твердого припоя необходима многоступенчатая зачистка целевой поверхности с применением абразивного шлифования и химического воздействия тетрахлористым углеродом. Готовая к работе деталь должна быть чистой, гладкой и по возможности ровной. Непосредственно в ходе выполнения пайки также рекомендуется особое внимание уделять способу фиксации заготовок. Желательно закреплять их в зажимном инструменте, но так, чтобы последний был защищен от химического и термического воздействия.

Не стоит забывать и о технике безопасности. Особой осторожности требуют активные расходные материалы - флюс и припой. В большинстве своем это химически небезопасные элементы, которые под высокотемпературным воздействием могут выделять токсичные вещества. Поэтому, как минимум, следует защищать кожные покровы и органы дыхания в процессе работы.

15.05.2013

В прошлой статье кратко описывалась проблема соединения деталей кузова современного автомобиля из высокопрочной стали. Одно из решений, сварка-пайка , слово знакомое лишь в узких кругах профессионалов кузовного ремонта.

Что такое сварка-пайка , какие задачи она решает, какое оборудование необходимо для сварки этим способом и какие материалы применяются для соединения деталей из высокопрочной стали, мы попытаемся кратко изложить в нашей статье.

Высокопрочные или многофазные : эти стали последнего поколения были дообработаны с целью увеличения прочности до 1600 MПa. Они в основном применяются для создания противоударных зон в кузове автомобиля. Например: Porsche 997, OpelCorsa 07.

Высокопрочные или многофазные стали, это соединение бейнита, аустенита и феррита. Эти стали обеспечивают высокую прочность и хорошую деформируемость. Их используют при производстве сложных деталей, которые важны для устойчивости автомобиля.

При всех преимуществах, у высокопрочной стали есть и недостатки. Более сложный процесс производства, уменьшение прочности при сильном нагреве, необходимость использования на СТО специального оборудования и применения современных методов работы, обязательная замена элемента кузова в случае повреждения, выправление повреждённых деталей запрещена, использование полуавтоматической сварки стальной проволокой строго запрещена.

Пайка MIG в среде защитного газа наиболее современный метод сварки для новейших видов сталей. Этот метод также называется MIG brazing (по-английски) илисваркой медью MIG.

Этот метод сварки все больше и больше используется различными автомобилестроителями и его все больше и больше рекомендуют для ремонта (Mercedes, Opel, VW, Peugeot, Toyota, Honda). Используется термин пайка т.к.листы металла, которые соединяют не плавятся, в отличие от сварки MIG/MAG или полуавтоматической сварки . Причина этому - работа при более низкой температуре, приблизительно 900°C.

Благодаря низкой температуре сварочной ванны, слой цинка практически не повреждается, и, таким образом, сохраняется антикоррозийная защита. Для современных сталей с высоким пределом упругости свойства материалов не меняются и деформации незначительны. Этот метод также позволяет уменьшить разбрызгивание при сварке.

Температура плавления медных сплавов значительно ниже: между 750°C и 1080°C. Так как температура плавления стали приблизительно 1500°C, пайка MIG не расплавит стальной лист и не изменяет первоначальных свойств, специальных сталей.

При пайке MIG плавится только проволока, но не свариваемые листы

Используемая проволока сделана из сплава меди и цинка. Это более благородный металл с очень хорошими антикоррозийными свойствами. Чаще всего используется проволока диаметром 0,8 - 1,0 мм в зависимости от аппарата и, как правило, это CUSI3. Принцип сварки-пайки состоит в наплавлении проволоки CUSI3 или CUAL8 настальную деталь при не очень высокой температуре. Диаметр проволоки 0,8 мм для аппарата с программой «Сварка-пайка » и 1 мм для импульсного аппарата.

При пайке MIG, соединение происходит диффузией. Речь идет о поверхностной, но очень стойкой спайке, позволяющей очень хорошее наполнение. Присадочный металл (медь) переносится капиллярным действием (хорошее наполнение в соединениях и трещинах) и, таким образом, полностью защищает оголенные края листового металла в зоне пайки.

Вдоль края пайки слой цинка расплавляется и соединяется с медью, образовывая защитный слой. Другими словами, обратная сторона сварки защищена от ржавчины.

Для сварки-пайки (металла с высоким пределом упругости) с помощью проволоки из сплава меди с кремнием CusI3 или сплава меди с алюминием CuAl8 (Ø 0,8мм и Ø 1мм) сварщик должен использовать нейтральный газ: чистый аргон (Ar). Для выбора газа спросите совета специалиста по продаже газа. Расход газа приблизительно между 15 и 25 Л/мин.

Сварочные аппараты RedHotDot HOTMIG-19 , HOTMIG-27 и HOTMIG-29 производят сварку-пайку, для этого необходимо подключить баллон с Аргоном, выбрать режим NORMAL 2T, выбрать диаметр проволоки 0,8 или 1.0, выбрать положение на панели управления CuSi/CuAl.

Применяемые :

  1. Капиллярная пайка. Припой заполняет зазор между соединяемыми поверхностями. Припой и металл при этом химически не взаимодействуют. Это наиболее распространенный метод пайки.
  2. Диффузионная пайка - длительная выдержка при высокой температуре. Происходит упрочнение шва за счет взаимной диффузии компонентов припоя и основного металла. Химического взаимодействия нет, образуется твердый раствор.
  3. Контактно-реактивная пайка. В этом случае между соединяемыми деталями или между деталями и припоем протекают активные реакции с образованием в контакте легкоплавкого соединения.
  4. Реактивно-флюсовая пайка. Шов образуется за счет реакции вытеснения между флюсом и основным металлом.
  5. Пайка - сварка, шов образуется способами сварки, но в качестве присадочного материала используется припой.

Методы пайки определяются химическими свойствами припоя, флюса и металла и режимом пайки (температура, время и т.д.) В зависимости от источника тепла осуществляется пайка следующими способами:

  1. пайка в печах;
  2. пайка сопротивлением;
  3. индукционная пайка;
  4. пайка паяльниками;
  5. пайка газовыми горелками.
  6. пайка погружением в расплавленный припой;

В качестве припоя используются чаще всего сплавы металлов.

Основные требования к припоям:

1. Иметь температура плавления как минимум на 50-100 о С ниже температуры плавления паяемых металлов.

2. Обеспечивать хорошее смачивание металла и хорошее заполнение шва пайки.

3. Образовывать прочные, пластичные и корррозионно- устойчивые швы.

4. Иметь коэффициент линейного расширения не отличающийся резко от коэффициента линейного расширения паяемых металлов.

Припои делятся на две группы: мягкие (температура плавления ниже 500 о С), и твердые (выше 500 о С).

Мягкая пайка дает относительно невысокую механическую прочность, используется для деталей, работающих при невысокой температуре и небольших вибрационных ударных нагрузках: радиаторы, топливные баки, электрические провода и т.д. Наиболее распространенные оловянно-свинцовые (олово в чистом виде как припой не используется) припои (цифра в названии припоя означает содержание в нем олова) : ПОС-18 (17-18% олова, 2-2,5% сурьмы и 79-81% свинца) используется для пайки неответственных деталей; ПОС-30 и ПОС-40 - для швов, имеющих достаточную прочность и надежность, ПОС-50 и ПОС-61 - для деталей, швы у которых не должны окисляться при работе (электрооборудование и др.).

Твердая пайка выполняется в том случае, когда необходимо иметь прочный шов или шов, работающий при высоких температурах (топливо- и маслопроводы, контакты реле, и т.д.). К твердым припоям относятся: медные, медно-цинковые, латунные, алюминиевые и серебряные. Медно-цинковые припои (первая цифра в названии припоя означает содержание меди в припое, остальное цинк и небольшое количество примесей) : ПМЦ-36 - для пайки латунных изделий; ПМЦ-48 - для деталей из медных сплавов, не подвергающихся ударным нагрузкам и изгибу; ПМЦ-54 - для пайки меди, бронзы и стали, не подвергающихся ударным нагрузкам.

Для получения эластичного и прочного соединения используются в качестве припоев латуни Л-62 и Л-68. (сплав меди с цинком - до 80% , с добавками алюминия, свинца, никеля - до 10%).

Для пайки ответственных конструкций используются серебряные припои: ПСр-12 (36%меди, 12%серебра, не более 1,5% примесей, остальное цинк); ПСр-45 для пайки латуни, меди и бронзы (контакты проборов электрооборудования) ;ПСр-70 для пайки электрических проводов, требующих низкого электрического сопротивления в местах пайки.

Для пайки деталей из алюминия и его сплавов используются алюминиево -кремниевые припои (силумины) и алюминиево - медные сплавы (34А и 35А). Припой 35А имеет более высокие механические качества и выше температуру плавления, чем 34А.

Для удаления с поверхности окисных пленок и защиты их от дальнейшего окисления служат флюсы, которые или растворяют окислы, или химически взаимодействуют с окислами и которые в виде шлака всплывают на поверхность шва. Также флюсы способствуют улучшению смачивания поверхностей пропоем. Температура плавления флюса должна быть ниже температуры плавления припоя.

При пайке мягкими припоями применяются нашатырь (или хлористый аммоний), водный раствор хлористого цинка и хлористого аммония с концентрацией 20-50%. Соляную кислоту в качестве флюса не используют, а применяют водный раствор хлористого цинка, который получают травлением водного раствора соляной кислоты цинком:

HCl + Zn2→ Zn Cl2 +H2.

Для исключения дальнейшей коррозии паяных деталей применяют канифоль, которую необходимо наносить на место пайки, но не на паяльник, т.к. при перегреве на паяльнике она может потерять свои флюсующие свойства.

При пайке твердыми припоями в качестве флюса используют буру или смесь её с борной кислотой и борным ангидридом. Подбором количества борного ангидрида изменяют температуру плавления флюса.

Паяние деталей мягкими припоями выполняется чаще всего с помощью паяльников (медных и электрических), а твердыми припоями - газовыми горелками или индукционным нагревом. Рабочая часть паяльника натирается нашатырем для удаления окислов, облуживается. Поверхность шва обезжиривается флюсом, паяльником расплавляется и переносится припой на место пайки и равномерно распределяется по ней.

Детали ходовой части строительных и дорожных машин имеют очень большой износ. В этом случае для восстановления их целесообразно применять заливку жидким металла (литейную сварку), т.к. другие способы (автоматическая наплавка, постановка бандажей и т.д.) не дают хорошего качества и очень дороги.

Деталь нагревают и помещают в кокиль, тоже нагретый до 200-250 о С. Через летники заливают в кокиль жидкий чугун или сталь, которые заполняют пространство между изношенной деталью и стенкой кокиля, происходит сварка металла, компенсирующая износ. Для деталей ходовой части последующей механической обработки не требуется. По сравнению с другими способами стоимость восстановления снижается в два-три раза, а долговечность находится на уровне новой детали.

много

4.1 Расчётная оценка ожидаемых механических свойств металла шва

При оценке ожидаемых механических свойств металла шва необходимо учитывать действие следующих технологических факторов: долю участия основного металла в формировании шва и его химический состав; тип и химический состав сварочных материалов; метод и режим сварки; тип соединения и число проходов в сварном шве; размеры сварного соединения; величину пластических деформаций растяжения в металле шва при его остывании.

4.1.1 Влияние доли участия основного металла и, соответственно, химического состава металла шва на его механические свойства устанавливается эмпирическими уравнениями.

а) Временное сопротивление разрыву s в, МПа, вычисляют по формуле

s в =48+500∙С+252∙Mn+175∙Si+239∙Cr+77∙Ni+80∙W+70∙Ti+

176∙Cu+290∙Al+168∙Mo, (51)

б) Относительное удлинение

δ=50,4─(21,8∙С+15∙Mn+4,9∙Si+2,4∙Ni+5,8∙Cr+6,2∙Cu+

2,2∙W+6,6∙Ti)+17,1∙Al+2,7∙Mo, (52)

где символами в уравнениях 48, 49 обозначено содержание химического

элемента в металле шва, %.

в) s т =0,73∙s в, (53)

где s в – временное сопротивление разрыву, МПа;

г) ψ=2,32∙δ, (54)

где δ – относительное удлинение, %.

4.1.2 Влияние скорости охлаждения и граничных условий на механические

свойства металла шва

а) Мгновенную скорость охлаждения металла в околошовной зоне при температуре наименьшей устойчивости аустенита w 0 , град/с при однопроходной сварке стыковых соединений со сквозным проплавлением определяют по формуле

w 0 =2plсgd 2 (Т min ─Т 0) 3 /(q п 2), (55)

б) Мгновенную скорость охлаждения металла в околошовной зоне при температуре наименьшей устойчивости аустенита w 0 , град/с при сварке тавровых соединений определяют по формуле

w 0 =3plсgd 2 (Т min ─Т 0) 3 /(q п 2), (56)

в) Мгновенную скорость охлаждения металла в околошовной зоне при температуре наименьшей устойчивости аустенита w 0 , град/с при наплавке валика на массивное тело определяют по формуле

w 0 =2pl(Т min ─Т 0) 2 /q п, (57)

где l – коэффициент теплопроводности, Вт/(см× 0 С),

с – удельная теплоёмкость, Дж/(г× 0 С);

g – плотность основного металла, г/см 3 ;

d– толщина свариваемого металла, см;

Т 0 – начальная температура, 0 С;

Т min – температура наименьшей устойчивости аустенита, 0 С;

q п – погонная энергия сварки, Дж/см.

Для низкоуглеродистых и низколегированных сталей можно принять

¾ l=0,42Вт/(см× 0 С);

¾ сg=5,25Дж/(см 3 × 0 С);

¾ Т min =550…600 0 С.

Полученные расчётным путём механические характеристики металла шва по формулам 51─53 следует скорректировать влиянием мгновенной скорости охлаждения (рисунок 9).

Рисунок 9 – График относительных характеристик механических

свойств металла шва в зависимости от мгновенной скорости

охлаждения шва

г) Механические характеристики металла шва с учётом мгновенной скорости охлаждения:

s в шва =s в ∙f(s в), (58)

s т шва =s в ∙f(s т), (59)

ψ шва =s в ∙f(ψ), (60)

4.2 Ожидаемые механические свойства и структурный состав металла околошовной зоны определяют по атласам (структурных превращений металла в точках ОШЗ при сварке) в зависимости от скорости охлаждения или погонной энергии сварки для каждой конкретной марки свариваемой стали (свариваемого металла).

5 РАЗРАБОТКА ТЕХНОЛОГИИ СВАРКИ

Алгоритм технологии сварки в общем виде можно представить:

а) Основной металл:

1) выбор, наименование свариваемого материала;

2) оценка свариваемости;

3) подготовка к сварке.

б) Сварочные материалы:

1) выбор, наименование сварочных материалов;

2) подготовка к сварке.

в) Сборка.

г) Сварка:

1) режим сварки;

2) техника выполнения сварки.

д) Зачистка сварного соединения.

е) Контроль качества сварного соединения.

После каждой операции следует назначать контроль.

ЛАБОРАТОРНАЯ РАБОТА №1.

"ИССЛЕДОВАНИЕ ВЛИЯНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

РАЗДЕЛКИ КРОМОК НА ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ

СВАРНОГО ШВА"

Цели работы.

1. Освоить методику расчёта основных параметров режима дуговой сварки и геометрических параметров сварного шва.

2. Исследовать влияние геометрических параметров разделки кромок на геометрические параметры сварного шва (наплавленного валика).

1. Аппарат сварочный:

2. Эпидиаскоп.

4. Слесарный инструмент.

5. Измерительный инструмент.

6. Калькулятор инженерный.

7. Пластина из стали Ст3 (10, 20, 09Г2С) с канавками различных геометрических параметров.

10. Миллиметровка.

1. Выполнить замеры геометрических параметров канавок;

2. Настроить режим сварки (заданный по таблице 9);

4. Выполнить сварку;

5. Изготовить макрошлиф;

6. Спроецировать контуры сварных швов на миллиметровку и выполнить замеры:

а) Ширины шва, е;

б) Глубины проплавления, h;

в) Высоты усиления, g;

г) Высоты шва, Н;

е) Площади наплавки, F н;

8. Выполнить расчет относительного расхождения, теоретических и полученных экспериментальным путём, значений геометрических параметров сварных швов.

9. Сделать выводы о работе.

Таблица 9 – Параметры режима сварки

ЛАБОРАТОРНАЯ РАБОТА №2.

"РАЗРАБОТКА ТЕХНОЛОГИИ СВАРКИ СТЫКОВОГО СОЕДИНЕНИЯ"

Цели работы.

1. Разработать технологию сварки стыкового соединения пластин из низкоуглеродистой конструкционной стали ферритного класса.

Продолжительность лабораторной работы – 4 часа

Оборудование, инструмент и материалы.

1. Аппарат сварочный:

а) А-1416 в комплексе с источником питания постоянного тока – выпрямителем сварочным ВКСМ-1000 и балластными реостатами РБ-302 (РБ-301, РБ-303);

б) АДФ-1002 в комплексе с источником питания переменного тока – трансформатором сварочным ТДФ-1000.

2. Эпидиаскоп.

3. Оборудование, инструмент и материалы для изготовления макрошлифов.

4. Слесарный инструмент.

5. Измерительный инструмент.

6. Калькулятор инженерный.

8. Сварочная проволока Св-08ХМ (Св-08, Св-08Г2С), диаметром 3,0мм (2,0мм, 2,5мм, 4,0мм).

9. Флюс сварочный АН-60 (АН-348).

10. Миллиметровка.

11. Карандаш с твёрдостью НВ или В.

Задание и методические указания.

11. Изготовить макрошлиф;

а) Ширины шва, е;

б) Глубины проплавления, h;

в) Высоты усиления, g;

г) Высоты шва, Н;

д) Площади проплавления, F пр;

е) Площади наплавки, F н;

17. Сделать выводы о работе.

Пункты задания и методических указаний даны в рекомендуемой последовательности для их выполнения

Временное сопротивление разрыву s в, МПа, определяют по формуле

Предел текучести s т, МПа, определяют по формуле

где НВ – твёрдость металла шва по Бринеллю

Отчёт о лабораторной работе оформить на бумаге формата А4 по ГОСТ 2.105-95. Основную надпись допускается не наносить на поле текстового документа.

ЛАБОРАТОРНАЯ РАБОТА №3.

"РАЗРАБОТКА ТЕХНОЛОГИИ СВАРКИ СОЕДИНЕНИЯ С УГЛОВЫМ ШВОМ"

Цели работы.

1. Разработать технологию сварки таврового (нахлёсточного) соединения пластин из низкоуглеродистой конструкционной стали ферритного класса.

2. Применить на практике методику расчёта основных параметров режима дуговой сварки и геометрических параметров сварного шва.

3. Закрепить навыки работы с технической литературой и нормативной документацией.

Продолжительность лабораторной работы – 4 часа

Оборудование, инструмент и материалы.

1. Аппарат сварочный:

в) А-1416 в комплексе с источником питания постоянного тока – выпрямителем сварочным ВКСМ-1000 и балластными реостатами РБ-302 (РБ-301, РБ-303);

г) АДФ-1002 в комплексе с источником питания переменного тока – трансформатором сварочным ТДФ-1000.

2. Эпидиаскоп.

3. Оборудование, инструмент и материалы для изготовления макрошлифов.

4. Слесарный инструмент.

5. Измерительный инструмент.

6. Калькулятор инженерный.

7. Пластины из стали Ст3 (10, 20, 09Г2С).

8. Сварочная проволока Св-08ХМ (Св-08, Св-08Г2С), диаметром 3,0мм (2,0мм, 2,5мм, 4,0мм).

9. Флюс сварочный АН-60 (АН-348).

10. Миллиметровка.

11. Карандаш с твёрдостью НВ или В.

Задание и методические указания.

1. Выполнить замеры геометрических параметров пластин;

2. Из ГОСТов выписать химический состав и механические характеристики основного металла, химический состав сварочной проволоки и сварочного флюса;

3. Оценить свариваемость основного металла по критериям, указанным в разделе 3;

4. В соответствии с ГОСТом или с заданием выбрать тип сварного соединения, назначить исходные геометрические параметры сварного соединения и сварного шва;

7. Оценить стойкость металла шва против образования горячих трещин и стойкость металла околошовной зоны против образования холодных трещин по критериям, указанным в разделе 3.

9. Сделать выводы о правильности выбора сварочных материалов, параметров режима сварки. Разработать технологию сварки в соответствие с рекомендациями раздела 5.

10. В соответствие с разработанной технологией выполнить сварочные работы и контрольные операции;

11. Изготовить макрошлиф;

12. Спроецировать контуры сварного шва на миллиметровку и выполнить замеры:

ж) Ширины шва, е;

з) Глубины проплавления, h;

и) Высоты усиления, g;

к) Высоты шва, Н;

л) Площади проплавления, F пр;

м) Площади наплавки, F н;

13. Замерить твёрдость металла шва;

14. Выполнить расчёт временного сопротивления разрыву и предела текучести металла шва по формулам 61 и 62;

15. Выполнить расчет относительного расхождения, теоретических и полученных экспериментальным путём, значений геометрических параметров сварных швов;

16. Представить значения величин геометрических параметров сварного шва и механических характеристик металла сварного шва, определённые расчетом и экспериментальным путём и относительное расхождение между ними в виде таблицы 10.

17. Сделать выводы о работе.

Пункты задания и методических указаний даны в рекомендуемой последовательности для их выполнения

Таблица 10 – Расчётные и экспериментальные параметры

Отчёт о лабораторной работе оформить на бумаге формата А4 по ГОСТ 2.105-95. Основную надпись допускается не наносить на поле текстового документа.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК


1. способы дуговой сварки 3

1.1 Электрическая сварочная дуга как технологический элемент 3

1.2 Основные способы дуговой сварки 5

1.3 Расчёт основных параметров режима механизированной сварки

в защитных газах и под флюсом и геометрических параметров

сварного шва 14

2. расчёт химического состава металла шва 22

2.1 Расчёт химического состава металла шва по смешению 22

2.2 Расчёт химического состава металла шва с учётом

прироста элементов из флюса 23

3. расчётные способы оценки сталей против

образования трещин при сварке 24

3.1 Оценка склонности сталей к образованию горячих

трещин при сварке 24

3.2 Оценка склонности легированной стали к образованию

холодных трещин при сварке 26

4. оценка ожидаемых механических свойств

сварного соединения 30

4.1 Расчётная оценка ожидаемых механических свойств

металла шва 30

4.2 Ожидаемые механические свойства и структурный состав

металла околошовной зоны 32

5. разработка технологии сварки 33

6. лабораторная работа №5. "Исследование влияния

геометрических параметров разделки кромок на

геометрические параметры сварного шва" 34

7. лабораторная работа №6. "разработка технологии

сварки стыкового соединения 36

8. лабораторная работа №7. "разработка технологии

сварки соединения с угловым швом 39

библиографический список 42

Специальные методы сварки и пайки

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ по дисциплине «Специальные методы сварки и пайки» для студентов специальности

150202 «Оборудование и технология сварочного производства»

очной и заочной форм обучения

Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Составители: к.т.н., доцент Крылов А.П.,

ассистент Рыбин В.А.

© Государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет» 2011


ЛАБОРАТОРНАЯ РАБОТА №1

Ручная дуговая сварка меди покрытыми электродами

Цель работы:

Изучение процессов сварки меди ручной дуговой сваркой покрытыми электродами: установление технологических параметров режима сварки при заданных теплофизических свойствах свариваемого металла на температурные поля и геометрические размеры сварного шва; выбор оптимальных режимов сварки для материала заданной толщины.

Материалы и оборудование:

1. Источник питания постоянного сварочного тока с крутопадающей ВАХ.

2. Медные пластины толщиной 4 мм, размером 150 х 50 мм – 2 шт.

3. Электроды для сварки меди «Комсомолец 100».

4. Стальная подкладочная пластина размером 10×200×200 мм.

Теоретические сведения:

Медь – это первый металл, который человек начал добывать и обрабатывать еще задолго до знакомства с железом. В земной коре меди сравнительно немного (~ 0,01 %), но из-за присущих ей уникальных свойств, она во многих случаях оказывается незаменимой.

Медь – диамагнитный, пластичный и тяжелый материал (γ = 8,94 г/см3) с высокой теплопроводностью (λ = 0,923 кал/см·с·0С) и низким электросопротивлением (ρ = 1,68 мкОм·см), а также высокой коррозионной стойкостью. Эти свойства меди определяют ее широкое применение в электротехнической и химической промышленности, в судостроении, приборостроении, металлургии и других отраслях производства.

Чистая медь обладает небольшой прочностью (σ = 216 … 235 МПа) и высокой пластичностью (δ = 60 %; ψ = 75 %).

Медь плавится при 1083 0С и кипит при 2360…2595 0С. В меди не обнаружено полиморфных превращений, во всем интервале температур ниже точки плавления, она имеет ГЦК решетку. Удельная теплоемкость меди примерно такая же, как железа и составляет 0,0915 кал/г·0С. примеси, содержащиеся в меди, снижают ее электропроводность (рис.1). кислород в не больших количествах повышает электропроводность меди ввиду того, что он способствует удалению при плавке примесей за счет их окисления.

С газами медь взаимодействует весьма активно, но с азотом не взаимодействует даже при высоких температурах.

Электроды с покрытиями для дуговой сварки меди (как и для других цветных металлов) государственными стандартами не регламентируются и изготавливаются по техническим условиям или паспортам на конкретные марки, составленные и утвержденные предприятиями или организациями - разработчиками электродов.

Стержни электродов изготавливаются из тянутой проволоки или круглых тянутых и прессованных прутков, регламентированных стандартами.

К числу первых марок электродов для сварки меди, разработанных Томским политехническим институтом совместно с заводом «Комсомолец» на основе медной проволоки марок М1 … М3 относятся электроды серии «Комсомолец» (комсомолец 100, Комсомолец МН, Комсомолец МС). В качестве раскислителей наплавленного металла применены ферромарганец, ферросилиций и кремнистая медь (71 % Cu, 24 % Si, 1 % Fe и до 0,155 % S).

Полное раскисление достигается при содержании кремния в металле шва в пределах 0,3…0,7 %. Положительное влияние на качество металла шва оказывает совместное легирование его марганцем и кремнием при соотношении 1: 3, что обеспечивает легкоплавкие, хорошо удаляемые из металла шлаки. При повышенном содержании кремния металл сварного шва охрупчивается. В пятидесятых годах прошлого века были разработаны электроды марок ММ3-1, ММ3-2. В качестве раскислителей в этих электродах применены ферросилиций, графит и сплав симанил состава: 31…35 % Si, 19…22 % Mn, 27…30 % Al. Применение сплава симанил вместо ферросплавов позволило снизить содержание железа и вредных примесей в наплавленном металле, что улучшило технологичность электродов.

Наибольшее распространение для сварки конструкций из меди и хромистой бронзы средних и больших толщин (5…20 мм) получили электроды марок АНЦ-1, АНЦ-2, выпускаемые по ТУ ИЭС 593-86, позволяющие выполнять сварку на форсированных режимах. При использовании этих электродов происходит относительно незначительное легирование металла шва (2…2,5 раза меньше, чем при использовании электродов «Комсомолец 100»), что существенно увеличивает его электропроводность.

Освоены в серийном производстве усовершенствованные электроды марок АНЦ/ОЗМ-2, АНЦ/ОЗМ-3, АНЦ/ОЗМ-4, предназначенные для сварки технически чистой меди, содержащей не более 0,01 % кислорода. Они имеют высокую производительность от 4 до 4,9 кг/ч (для электродов диаметром 4 мм) и коэффициент наплавки от 14,5 до 17,5 г·А/ч. Медь толщиной до 4 мм сваривают без разделки кромок; до 10 мм – с односторонней разделкой при угле скоса кромок до 60…70 0 и притуплением 1,5…3 мм. При большей толщине рекомендуется Х – образная разделка кромок. Использование электродов серии АНЦ позволяет выполнять стыковые соединения на меди толщиной до 20 мм без разделки кромок одно или двусторонними швами.

Перед сваркой свариваемый металл тщательно очищают от оксидов и загрязнений до металлического блеска и обезжиривают для получения более качественного сварного соединения. Зачистка кромок может выполняться механическим способом – наждаком, металлическим щетками и т.п. Абразивным камнем пользоваться не рекомендуется, так как оставляемые им на поверхности металла глубокие риски служат очагами последующих загрязнений и затрудняют обезжиривание органическим растворителями.

При ручной сварке меди покрытыми электродами необходим подогрев кромок, начиная с толщины 4 мм. Температура подогрева возрастает с увеличением толщины свариваемых кромок и габаритов изделия.

При толщине кромок 5…8 мм металл подогревают до 200…300 ˚С, при толщине 24 мм – 750… 800 ˚С. электроды марки АНЦ-1 (АНЦ-2) обеспечивают выполнение сварки без подогрева металла толщиной до 10…15 мм или с невысоким подогревом для металла больших толщин.

Таблица 1

Ориентировочные режимы ручной однопроходной сварки меди покрытыми электродами

b , мм , мм Iсв , А , В
2 - 3 100 - 120 25-27
3-4 120-160 25-27
4-5 160-200 25-27
5-6 240-300 25-27
5-7 260-340 26-28
7-8 6-7 380-400 26-28
9-10 6-8 400-420 28-30

Сварка покрытыми электродами выполняется на постоянном токе обратной полярности. Сварочный ток назначают из соотношения I св ~ 50 d эл (табл.2), а для электродов серии АНЦ - I св = (85…100) d эл при U д = 45…50В.

При многослойной сварке меди толщиной более 10… 12 мм (3…6 слоев) используют электроды диаметром 6…8 мм при сварочном токе до 500 А.

Сварку ведут короткой дугой без поперечных колебаний электрода. Лучшее формирование шва обеспечивает возвратно-поступательное движение электрода. Удлинение дуги ухудшает формирование шва, увеличивает разбрызгивание, ухудшает механические свойства сварных соединений. При сварке стыковых соединений используют металлические (стальные или медные) или асбестовые подкладки. Сварку производят в нижнем положении или слегка наклонном положении (на подъем).

Сварка электродами «Комсомолец 100» обеспечивает удовлетворительные механические свойства металла шва: σ в =180…200 МПа; δ = 18…20 %; α = 1800; KCU = 0,59…0,78 МДж/м2. Достаточно высокие механические свойства шва и сварного соединения на меди можно получить также при использовании электродов со стержнями из бронзы Бр.КМц 3-1, Бр.ОФ 4-0,3 и латуни Л90 (σ в = 190…230 МПа; α = 1800).

Проковка швов на меди без нагрева увеличивает прочность металла швов при некотором снижении пластичности (σ в = 235…242 МПа; α = 143…1800).

Теплопроводность и электрическая проводимость сварных по сравнению с этими же параметрами основного металла значительно снижаются. Электрическая проводимость металла шва составляет всего 20 % электрической проводимости меди М1. примерно в такой же степени снижается электрическая проводимость шва при сварке электродами со стержнями из бронзы Бр.КМц 3-1.

Порядок выполнения работы

1. Произвести подготовку пластин под сварку с V-образным скосом кромок под общим углом 70-80˚, с притуплением 2-3 мм.

2. Установить пластины на стальной подкладке встык с зазором в 1 мм и произвести прихватку, как показано на рис. 1.

3. Выполнить сварку пластин в соответствии с рис.1

4. После окончания сварки произвести быстрое охлаждение пластин в воде.

5. Вырезать из сварных пластин образцы и изготовить из них макро- и микрошлифы, произведя травление макрошлифов реактивом из 15 г двуххромовокислого калия, 10 мл серной кислоты и 100 мл воды.

6. Исследовать макро- и микроструктуру образцов. Исследование микроструктуры производить при увеличении ×200.

Рис.1. Схема прихватки и сварки медных пластин

Отчет должен содержать:

· описание методики проведения опытов

· результаты опытов, занесенные в соответствующие графы таблицы;

· формулирование выводов

· объяснение полученных результатов;

· краткое описание устройства и работы сварочной установки;

· технологический процесс сварки заданного узла.

Вопросы для самоконтроля:

1. Состав покрытия электродов для ручной дуговой сварки меди и ее сплавов.

2. Технология ручной дуговой сварки покрытыми электродами.

3. Маркировка сварочной проволоки для сварки меди и ее сплавов.

4. Флюсы для сварки электродуговой сварки меди и ее сплавов.

5. Как выбирают ток при сварке меди под слоем флюса.

ЛАБОРАТОРНАЯ РАБОТА №2

Технологический процесс пайки включает комплекс выполняемых операций, основными из которых являются следующие.

Подготовка поверхности под пайку. Качество подготовки поверхности под пайку во многом определяет уровень и стабильность свойств паяного со­единения. Существуют следующие основные способы очистки поверхности: 1) термический (горелками, отжигом в восстановительной атмосфере, в вакууме); 2) механический (обработка режущим инструментом или абразивом, гидропескоструйная или дробеструйная галтовка); 3) химический (обезжиривание, химическое травление, электрохимическое травление, травление с ультразвуковой обработкой, комбинированное с обезжириванием и травлением).

Подготовка детали под пайку включает в себя также нанесение специальных технологических покрытий гальваническим или химическим способом, горячим лужением (погружением в расплавленный припой), с помощью ультразвука, плакированием, термовакуумным напылением. Часто сборка включает в себя нанесение припоя, укладку его в виде дозированных заготовок из проволоки или фольги. При размещении припоя необходимо учитывать условия пайки: расположение изделия в печи или другом нагревательном устройстве, режимы нагрева и охлаждения.

Нанесение флюса. Иногда при сборке деталей под пайку требуется нанести флюс. Порошкообразный флюс разводят дистиллированной водой до состояния негустой пасты и наносят шпателем или стеклянной палочкой, после чего детали подсушивают в термостате при 70–80°С в течение 30–60 мин. При газопламенной пайке флюс подают на прутке разогретого при­поя, при пайке паяльником – рабочей частью паяльника или вместе с при­поем, в случае применения оловянно-свинцового припоя – в виде трубок, наполненных канифолью.

Пайка (нагрев места соединения или общий нагрев собранных деталей) выполняется при температуре, превышающей температуру плавления при­поя, как правило, на 50–100°С. В зависимости от температуры плавления применяемых припоев пайка подразделяется на высокотемпературную и низкотемпературную.

Поверхности, не подлежащие пайке, предохраняют от контакта с припоем специальной обмазкой из графита с добавками небольшого количества извести. Пайку погружением в расплавленный припой используют для стальных, медных, алюминиевых и твердых сплавов, деталей сложных геометрических форм. На этот процесс расходуется большое количество припоев. Разновидностью пайки погружением является пайка бегущей волной припоя, когда расплавленный припой подается насосом и образует волну над уровнем расплава. Паяемая деталь перемещается в горизонтальном направлении. В момент касания ванны проходит пайка. Бегущей волной паяют в радиоэлектронной промышленности при производстве печатного радиомонтажа.

3. Способы пайки

Способы пайки классифицируют в зависимости от используемых источников нагрева. Наиболее распространены в промышленности пайка радиационным нагревом, экзофлюсовая, паяльниками, газопламенная, погружением, электродуговая, индукционная, электросопротивлением, пайка в печах.

Пайка радиационным нагревом. Пайку выполняют за счет излучения кварцевых ламп, расфокусированного электронного луча или мощного светового потока от квантового генератора (лазера). Конструкцию, подлежащую пайке, помещают в специальный контейнер, в котором создают вакуум. После вакуумирования контейнер заполняют аргоном и помещают в приспособление, с двух сторон которого устанавливают для обогрева кварцевые лампы. После окончания нагрева кварцевые лампы отводят, а приспособление вместе с деталями охлаждают. При применении лазерного нагрева сосредоточенная в узком пучке тепловая энергия обеспечивает испарение и распыление окисной пленки с поверхности основного металла и припоя, что позволяет получать спаи в атмосфере воздуха без применения искусственных газовых сред. При радиационном способе пайки лучистая энергия превращается в тепловую непосредственно в материале припоя и паяемых деталей. Этот способ пайки непродолжителен.

Экзофлюсовая пайка. В основном этим способом паяют коррозионно-стойкие стали. На очищенное место соединения наносят тонкий порошкообразный слой флюса. Соединяемые поверхности совмещают, на противоположные стороны заготовок укладывают экзотермическую смесь. Смесь состоит из разных компонентов, которые укладывают в форме пасты или брикетов толщиной в несколько миллиметров. Собранную конструкцию устанавливают в приспособлении и помещают в специальную печь, в которой происходит зажигание экзотермической смеси при 500°С. В результате экзотермических реакций смеси температура на поверхности металла повышается и происходит расплавление припоя. Этим методом паяют соединения внахлестку и готовые блоки конструкций небольших размеров.

Пайка паяльниками. Основной металл нагревают и припой расплавляют за счет теплоты, аккумулированной в массе металла паяльника, который перед пайкой или в процессе ее подогревают. Для низкотемпературной пайки применяют паяльники с периодическим нагревом, с непрерывным нагревом, ультразвуковые и абразивные. Рабочую часть паяльника выполняют из красной меди. Паяльник с периодическим нагревом в процессе работы иногда подогревают от постороннего источника теплоты. Паяльники с постоянным нагревом делают электрическими. Нагревательный элемент состоит из нихромовой проволоки, намотанной на слой асбеста, слюды или на керамическую втулку, устанавливаемую на медный стержень паяльника. Паяльники с периодическим и непрерывным нагревом чаще используют для флюсовой пайки черных и цветных металлов мягкими припоями с температурой плавления ниже 300–350°С. Ультразвуковые паяльники применяют для бесфлюсовой низкотемпературной пайки на воздухе и для пайки алюминия легкоплавкими припоями. Оксидные пленки разрушаются за счет колебаний ультразвуковой частоты. Абразивными паяльниками можно паять алюминиевые сплавы без флюса. Оксидная пленка удаляется в результате трения паяльника о металл.

Важное значение имеет сборка узлов под пайку. Сборка должна обеспечивать фиксацию взаимного положения деталей с требуемым зазором и поступление припоя в зазор. В тех случаях, когда припой заранее закладывают в соединение в виде фольги и затем нагревают узел (например, в вакуумной печи), необходимо обеспечить сжатие деталей при температуре пайки с определенным усилием. Если это усилие будет недостаточным, то получится слишком толстый шов с неудовлетворительной прочностью. Чрезмерное сжатие может повредить паяемый узел.

Для сжатия деталей при пайке применяют специальные приспособления. Необходимое усилие сжатия обеспечивается механическими зажимами или разницей между температурным расширением материала изделия и материала приспособления. Последний способ нередко является единственным, когда печная пайка осуществляется при высоких температурах.

Газопламенная пайка. При пайке нагрев осуществляется пламенем газовой горелки. В качестве горючего газа используют смеси различных газообразных или жидких углеводородов (ацетилен, метан, пары керосина и т. д.) и водород, которые при сгорании в смеси с кислородом дают высокотемпературное пламя. При пайке крупных деталей горючие газы и жидкости применяются в смеси с кислородом, при пайке мелких деталей – в смеси с воздухом. Пайку можно выполнять как горелками специального типа, дающими широкий факел, так и нормальными, сварочными паяльными лампами.

Пайка погружением в расплавленный припой. Расплавленный припой в ванне покрывается слоем флюса. Подготовленная к пайке деталь погружается в расплавленный припой (металлическую ванну), который также является источником тепла. Для металлических ванн обычно используют медно-цинковые и серебряные припои.

Пайка погружением в расплавленную соль. Состав ванны выбирают в зависимости от температуры пайки, которая должна соответствовать рекомендуемой температуре ванны 700–800°С при работе на смеси определенного состава. Ванна состоит из хлористых натрия, калия, бария и др. Этот метод не требует применения флюсов и защитной атмосферы, так как состав ванны подбирают таким, что он вполне обеспечивает растворение оксидов, очищает паяемые поверхности и защищает их от окисления при нагреве, т. е. является флюсом.

Детали подготавливают к пайке, на шов в нужных местах укладывают припой, после чего опускают в ванну с расплавленными слоями, являющимися флюсом и источником тепла, где припой расплавляется и заполняет шов.

Электродуговая пайка. При дуговой пайке нагрев осуществляется дугой прямого действия, горящей между деталями и электродом, или дугой косвенного действия, горящей между двумя угольными электродами. При использовании дуги прямого действия обычно применяют угольный электрод (угольная дуга), реже – металлический электрод (металлическая дуга), которым служит сам стержень припоя. Угольную дугу направляют на конец стержня припоя, касающегося основного металла, так, чтобы не расплавлять кромок детали. Металлическую дугу применяют при токах, достаточных для расплавления припоя и очень незначительно оплавляющих кромки основного металла. Для пайки дугой прямого действия пригодны высокотемпературные припои, не содержащие цинка. При помощи угольной дуги косвенного действия можно выполнять процесс пайки высокотемпе­ратурными припоями всех типов. Для нагрева этим способом применяют специальную угольную горелку. Ток к электродам подается от машины для дуговой сварки.

Индукционная пайка (пайка токами высокой частоты ). При индукционной пайке детали нагреваются индуктируемыми в них вихревыми токами. Индукторы изготовляются из медных трубок, преимущественно прямоугольного или квадратного сечения, в зависимости от конфигурации деталей, подлежащих пайке.

При индукционной пайке быстрый нагрев детали до температуры пайки обеспечивается использованием энергии высокой концентрации. Для предохранения индуктора от перегрева и расплавления применяется водяное охлаждение.

Пайка электросопротивлением. При этом способе пайки электрический ток низкого напряжения (4–12 В), но сравнительно большой силы (2000–3000 А) пропускают через электроды и за короткое время нагревают их до высокой температуры; детали нагреваются как за счет теплопроводности от нагретых электродов, так и за счет тепла, выделяемого током при его прохождении в самих деталях.

При прохождении электрического тока паяемое соединение нагревается до температуры плавления припоя, и расплавленный припой заполняет шов. Контактную пайку производят или на специальных установках, обес­печивающих питание током большой силы и малого напряжения, или на обычных машинах для контактной сварки.

Пайка в печах. Для пайки используются электрические печи и реже пламенные печи. Нагрев деталей под пайку производят в обычной, восстановительной или обладающей защитными свойствами средах. Пайку высокотемпературными припоями производят с применением флюсов. При пайке в печах с контролируемой средой подлежащие пайке детали из чугуна, меди или медных сплавов собирают в узлы.

Пайка соединений металлов с неметаллическими материалами. Пайкой можно получить соединения металлов со стеклом, кварцем, фарфором, керамикой, графитом, полупроводниками и другими неметаллическими материалами.

Обработка после пайки включает в себя удаление остатков флюса. Флюсы, частично оставшиеся после пайки на изделии, портят его внешний вид, изменяют электрическую проводимость, а некоторые вызывают коррозию. Поэтому остатки их после пайки должны быть тщательно удалены. Остатки канифоли и спиртоканифольных флюсов обычно коррозии не вызывают, но если по условиям эксплуатации изделий требуется их удалить, то изделие промывают спиртом, спиртобензиновой смесью, ацетоном. Агрессивные кислотные флюсы, содержащие соляную кислоту или ее соли, тщательно отмывают последовательно горячей и холодной водой с помощью волосяных щеток.

Типовые паяные соединения показаны на рис. 2.1. Паяные швы отличаются от сварных по конструктивной форме и способу образования.

Тип паяного соединения выбирают с учетом эксплуатационных требований, предъявляемых к узлу, и технологичности узла в отношении пайки. Наиболее распространенным видом соединения является пайка внахлестку.

Рис. 2.1. Типовые паяные соединения

В узлах, работающих при значительных нагрузках, где, кроме прочности шва, необходима герметичность, детали следует соединять только внахлестку. Швы внахлестку обеспечивают прочное соединение, удобны привыполнении и не требуют проведения подгоночных операций, как это имеет место при пайке встык или в ус.

Стыковые соединения обычно применяют для деталей, которые нерационально изготовлять из целого куска металла, а также в тех случаях, когда нежелательно удваивать толщину металла. Их можно применять для малонагруженных узлов, где не требуется герметичность. Механическая прочность припоя (особенно низкотемпературного) обычно бывает ниже прочности соединяемого металла; для того чтобы обеспечить равнопрочность паяного изделия, прибегают к увеличению площади спая путем косого среза (в ус) или ступенчатого шва; часто с этой целью применяют комбинацию стыкового соединения с нахлесткой.

Пайкой можно изготавливать сложные по конфигурации узлы и целые конструкции, состоящие из нескольких деталей, за один производственный цикл (нагрев), что позволяет рассматривать пайку (в отличие от сварки) как групповой метод соединения материалов и превращает ее в высокопроизводительный технологический процесс, легко поддающийся механизации и автоматизации.

При пайке возможны следующие дефекты: смещение паяемых элементов; раковины в швах; пористость в паяном шве; флюсовые и шлаковые включения; трещины; непропай; деформации местные и общие.

© autonomichouse.ru, 2024
Автономный дом