Способ ручной плазменной закалки. Плазменная закалка деталей машин Цены на плазменную закалку

16.04.2024

Термическое упрочнение стальных деталей является одним из наиболее эффективных и действенных способов увеличения ресурса работы нагруженных элементов машин и механизмов, а также снижения их материалоемкости. Во многих случаях технически и экономически оправдана локальная термообработка. При этом упрочняют только наиболее нагруженную рабочую поверхность детали, оставляя нетронутой сердцевину. Для поверхностного упрочнения деталей в промышленности широко применяют термическую высокочастотную и газопламенную обработки.

Дальнейший прогресс в повышении качества термообработки рабочих поверхностей деталей связывают с применением концентрированных источников энергии: электронного и лазерного луча, плазменной струи. При этом достигаются более высокие эксплуатационные свойства и качество упрочнения. Из всех способов термообработки высококонцентрированными источниками нагрева наиболее экономичным и производительным является плазменный. Он характеризуется меньшей стоимостью, доступностью технологического оборудования и большими размерами упрочненной зоны.

Особенности плазменной поверхностной закалки - кратковременность процесса нагрева и возможность создания условий охлаждения, обеспечивающих высокую интенсивность, - оказывают существенное влияние на структуру закаленного слоя. Эффект скорости охлаждения при металлографическом исследовании прежде всего заметен в диспергировании структуры. Скорость нагрева оказывает существенное влияние на размер рекристаллизованного зерна, так как с ее увеличением число центров рекристаллизации растет быстрее, чем скорость роста центров. Это приводит к измельчению зерна. Кратковременное пребывание стали в области закалочных температур и протекание фазовых превращений при температурах, превышающих равновесные, приводят к получению механических свойств, отличающихся от свойств стали, закаленной с нагревом от традиционных источников теплоты. В доэвтектоидной стали при быстром нагреве, когда структурно свободный феррит претерпевает перекристаллизацию без влияния атомов углерода, аустенитное зерно всегда несколько мельче того, которое обычно получается при медленном нагреве до температуры аустенизации. Такое изменение блочной структуры аустенита приводит к уменьшению размеров когерентных областей и увеличению значений микронапряжений и искажений в закаленной стали. В условиях поверхностной закалки это становится причиной повышения твердости закаленного слоя. В предварительно сорбитизированных структурах выравнивание концентрации углерода в аустените протекает быстрее, поэтому при нагреве стали с такой структурой размер зерна аустенита может быть еще более мелким - 14-16 баллов. Соответственно и игольчатость мартенсита имеет более тонкое строение, приближающееся к структуре, характеризующейся как безигольчатый мартенсит. Измельчение структуры мартенсита приводит к увеличению ударной вязкости.

Применение быстрого нагрева, способствующего получению более мелкой структуры закаленной стали, дает возможность получить более благоприятное сочетание свойств прочности и вязкости.

Повышение уровня эксплуатационных свойств упрочняемой детали достигается за счет совершенствования технологии упрочнения, что, в конечном счете, сводится к обеспечению оптимального термического цикла (нагрева-охлаждения) исходя из закономерностей структурных, фазовых и полиморфных превращений упрочняемого материала.

Нагрев под закалку по технологии НПП "ТОПАС" осуществляют высокоэн-тальпийной плазменной струей, стелящейся вдоль нагреваемой поверхности. Нагретая зона охлаждается сразу при выходе из плазмы, в основном, за счет отвода теплоты в тело массивной стальной детали, кондуктивного и радиационного теплоотвода с поверхности в атмосферу.

Нагрев каждого участка поверхности происходит с нарастающей плотностью теплового потока в соответствии с изменением теплофизических параметров плазмы по мере приближения к устью струи. Эти параметры в свою очередь можно регулировать в широком диапазоне. Особенностью такого процесса является "мягкий" прогрев с относительно небольшой скоростью нарастания температуры до начала аустенитизации стали. При этом параметры греющей среды, время взаимодействия с учетом температуропроводности материала согласуются так, чтобы обеспечить наибольшую глубину прогрева. "Мягкий" прогрев плавно переходит в "жесткий" с высокой скоростью нарастания температуры в поверхностном слое для более полной аустенитизации, гомогенизации и растворения карбидов.

Рассматриваемая схема процесса поверхностного плазменного нагрева под закалку характеризуется высоким КПД (60-80%) и согласованностью темпов нарастания плотности теплового потока греющей среды с теплофизическими свойствами стали.

Научно-производственное предприятие "ТОПАС" разработало новые технологию и оборудование для высокоскоростной плазменной поверхностной закалки.

Для высокотемпературной поверхностной закалки применяют установку УВПЗ-2М. В ее состав входят: источник электропитания; пульт управления с цифровой системой индикации параметров, оптимизации процесса и неразрушающего контроля; электродуговые горелки с кабель-шланговыми пакетами; специальные формирующие насадки со шланговыми пакетами; пакет монтажных соединений и ЗИП.

Техническая характеристика:

Рабочий ток, А... 150-250
Рабочее напряжение, В.... 180-250
Расход сжатого воздуха при давлении в сети 0,5-0,6 МПа, м3/ч.......... 5-8
Расход горючего газа, м3/ч:
метана... 0,5
пропан-бутана.... 0,2
Расход воды для охлаждения при давлении в подводящей сети 0.3 МПа, м3/ч... 1,5
Продолжительность включения ПВ,%...100
Глубина закаленной зоны, мм.... 0,5-3,5
Ширина закаленной зоны, мм... 5-35

Технология поверхностной закалки НПП "ТОПАС" характеризуется новыми возможностями повышения контактно-усталостной прочности металла и, как следствие, увеличением надежности тяжелонагруженных деталей. Она основана на использовании многокомпонентной химически активной высокотемпературной (6000-7000 К) струи продуктов сгорания углеводородного газа (метана, пропан-бутана) с воздухом. Такая высокотемпературная среда характеризуется комбинацией уникальных транспортных и теплофизических свойств. Она более энергоемка, чем любые двухатомные газы при тех же условиях. Теплоотдача от высокотемпературных продуктов сгорания к нагреваемому изделию повышается как за счет высокого температурного уровня, так и благодаря изменению транспортных свойств диссоциированных продуктов сгорания (вследствие их последующей рекомбинации). С технологической точки зрения - это легкость регулирования окислительно-восстановительного потенциала, способность эффективно прогревать материалы, управлять параметрами стабилизированного электродугового разряда и др.

Многократное (5-10 раз) повышение плотности теплового потока может быть достигнуто при закалке с малых дистанций в пределах начального участка струи за счет образования несамостоятельного диффузного разряда между соплом-анодом электродуговой горелки и деталью от отдельного маломощного источника электропитания. Формирование такого разряда в высокотемпературных продуктах сгорания облегчается по сравнению с воздухом и инертными газами. Происходит это благодаря качественному изменению характера приэлектродных процессов на аноде горелки и повышению разности потенциала высокотемпературной струи по отношению к аноду в продуктах сгорания. Доступность и невысокая стоимость используемых рабочих газов делают особенно предпочтительным их применение с увеличением мощности установок, соответственно производительности процессов, когда рабочие параметры смещаются в область повышенных расходов газа.

Среди упрочняющих технологий плазменная является относительно новой, интенсивно развивающейся в последние годы. Широкое распространение получил процесс плазменного поверхностного упрочнения гребней колесных пар без выкатки их из-под локомотива, а также с использованием автоматических линий. Стимулом развития технологии явились участившиеся случаи катастрофического изнашивания колесных пар тягового и подвижного состава на всех железных дорогах бывшего Советского Союза. Среди множества принимаемых мер плазменное поверхностное упрочнение явилось наиболее эффективным.

Технология плазменной поверхностной закалки НПП "ТОПАС" обеспечивает увеличение надежности и долговечности колесных пар тягового и подвижного состава. Интенсивность изнашивания гребней колесных пар с плазменным упрочнением значительно ниже, чем у серийных (в 2,5-3 раза). Разработанная технология закалки колесных пар обеспечивает две отличительные особенности, способствующие улучшению механических свойств (в т. ч. снижению коэффициента трения в контакте гребня с боковой поверхностью рельса) и повышению трещиностойкости материала колеса в зоне плазменного упрочнения:
локальное (в зоне наибольшего износа) поверхностное упрочнение гребня колеса на глубину 2,5-3 мм и ширину 35 мм с твердостью 280 НВ (в исходном материале) до твердости 450 НВ, что обеспечивает оптимальное соотношение твердости контактирующих поверхностей колеса и рельса;
изменение структуры упрочненной зоны колеса - с феррито-перлитной смеси с размером исходных зерен 30-40 мкм до смеси мелкоигольчатого мартенсита с розеточным трооститом 50:50%.

Плазменная поверхностная закалка лезвия почвообрабатывающего инструмента дает существенные преимущества перед традиционными (объемная закалка, наплавка) процессами упрочнения, Инструмент самозатачивается при работе, а сравнительные испытания на трех машиноиспытательных станциях с различными грунтами показали примерно двухкратное увеличение стойкости. Учитывая высокую производительность закалки (2 см/с), легкость полной автоматизации процесса, простоту обслуживания оборудования, низкие текущие затраты и высокую эффективность, лазменное упрочнение лезвий почвообрабатывающего инструмента можно реализовать в условиях ремонтных предприятий.

Плазменную поверхностную обработку можно эффективно применять для повышения стойкости шестерен и металлообрабатывающего инструмента. Проблема дефицита и высокой стоимости инструментальных сталей может быть существенно снижена для машиностроительных предприятий благодаря повышению работоспособности металлообрабатывающего инструмента (резцов, сверл, фрез). Плазменная поверхностная обработка позволяет повысить стойкость данного инструмента в 2-2,5 раза.

СВАРКА. РЕНОВАЦИЯ. ТРИБОТЕХНИКА: тезисы докладов / Отв. ред. ; М-во образования и науки РФ; ФГАОУ ВПО “УрФУ им. первого Президента России Б.Н. Ельцина”, Нижнетагил. технол. ин-т (фил.). – Нижний Тагил: НТИ (филиал) УрФУ, 2013. – 76 с.

Сведения о плазменной закалке появились в 80-х годах XX века [ , ]. Наличие в промышленности различных плазменных аппаратов (для резки, сварки, напыления) подталкивало новаторов приспосабливать их для поверхностной закалки. Установку микроплазменной сварки использовали для поверхностной закалки деталей шахтного оборудования и автомобильных распределительных валов . Установку для напыления с мощной дугой косвенного действия применили для закалки прокатных валков .

Большую работу по адаптации сварочных аппаратов для поверхностной закалки провели в Нижнетагильском филиале Уральского политехнического института, ныне – Уральского федерального университета. Модернизация плазмотрона позволила использовать установку плазменной сварки УПС-501 для поверхностной закалки дугой прямого действия. Внедрение в производство было сделано на Нижнетагильском металлургическом комбинате (НТМК) в 1985 г. Успех был замечательный, стойкость бандажей рельсоправильных машин с плазменной закалкой увеличилась в 2-4 раза [ , ]. Впоследствии разработанная технология с усовершенствованиями стала применяться для поверхностной закалки ручьёв (калибров) валков горячей прокатки . Таким же образом для плазменной закалки была адаптирована установка плазменной резки УПР-404 . Она получила применение для упрочнения наплавленных роликов рольгангов, транспортирующих закалённые рельсы. За счёт её срок службы роликов увеличился более чем в три раза. Для исключения трещин установили оптимальное соотношение толщин закалённого и наплавленного слоёв, а для увеличения глубины закалки – способ сканировании дуги [ , ].

В отличие от плазменных установок, оборудование для сварки вольфрамовым (W) неплавящимся электродом в аргоне более распространённое. Поэтому была выполнена его адаптация к поверхностной закалке. Чтобы увеличить ширину закалённых полос к дуге подвели магнитное поле, которое придало ей веерообразную форму и равномерно распределило тепловую энергию на ширину до 15 мм [ , ]. Плазменные установки с дугой косвенного действия, адаптированные к закалке, применялись для упрочнения валков, железнодорожных колёс и прокатных валков [ , ].

Несмотря на перечисленные успехи, плазменная закалка в 90-х гг. не обрела самостоятельной жизни. Её промышленное применение в основном поддерживалось разработчиками технологий. Плазменные установки для поверхностной закалки как самостоятельный вид товара не выпускались.

Установка ручной плазменной закалки УДГЗ-200

Разработанные технологии плазменной закалки имели существенный недостаток – их ручное применение было не возможно или затруднительно. Дуга косвенного действия работает при напряжениях более 250 В, которые не допустимы в ручном процессе. Дуга прямого действия чувствительна к настройке режима. Отклонения от оптимального, которые неизбежны при ручной закалке, сопровождаются или оплавлением закаливаемой поверхности, или исчезновением закалённого слоя. Поэтому выше описанные технологии плазменной закалки применялись только в автоматическом режиме, когда параметры настройки легко поддерживаются неизменными.

В современный век роботов и “безлюдных” производств разработка ручной технологии может показаться ошибочной. Однако ручные технологии, благодаря универсальности, демонстрируют живучесть. В мире основной объём сварки (более 80%) выполняются электродами или полуавтоматами, то есть вручную. По аналогии ожидалось, что с разработкой ручного способа плазменной закалки объёмы её применения возрастут, и произойдёт это за счёт изделий, которые ранее по тем или иным причинам закалить было не возможно.

При ручной закалке плазменная дуга должна обеспечивать равномерный прогрев независимо от естественных и неизбежных при этом колебаний длины дуги и скорости её перемещения. Критерием оценки служит отсутствие внезапных оплавлений поверхности и исчезновений закалённого слоя. Направление в исследованиях было выбрано с учётом работы . В ней установлено, что обжатие сварочной дуги возможно не только в сопле, но и за счёт газового потока, истекающего через контролируемый зазор между соплом и электродом. В результате был разработан способ ручной плазменной закалки, горелка для его осуществления и на их основе – закалочная установка УДГЗ-200 () [ , , ]. Закалка выполняется горелкой, небольшие размеры которой делают её удобной для ручного манипулирования, позволяют добираться ею до труднодоступных мест и упрочнять то, что ранее было невозможно .

Рисунок 1 – Установка УДГЗ-200

При закалке сварщик перемещает дугу () по поверхности со скоростью, обеспечивающей легкое “вспотевание” металла под дугой. Это состояние контролируется не труднее, чем плавление при сварке, но оно позволяет поддерживать необходимый для закалки нагрев и одновременно не допускает грубого повреждения поверхности. Дуга оставляет на поверхности закалённые полосы шириной 8-12 мм, которые сварщик располагает с некоторым перекрытием. Они окрашены “цветами побежалости”, то есть покрыты тонкой плёнкой окислов, которые не оказывают существенного влияния на шероховатость поверхности (). Плазменная закалка не даёт деформаций, благодаря чему закалённым деталям не требуются финишная шлифовка.

Рисунок 2 – Плазменная дуга во время закалки

Рисунок 3 – Пальцы ковша экскаватора с плазменной закалкой

Закалка происходит за счёт отвода тепла в тело детали без подачи воды на место нагрева. Поэтому установка УДГЗ-200 применяется на ремонтных площадках, по месту механообработки и эксплуатации деталей, а не только в термических цехах и на специализированных участках.

Твёрдый (HRC 45-65) слой закалки (0,5-1,5 мм) многократно увеличивает срок службы крановых рельс и колёс, зубчатых и шлицевых соединений, канатных блоков, вырубных, формовочных, вытяжных штампов и других ответственных деталей. Наличие установки УДГЗ-200 восполняет отсутствие печей для закалки, цементации, установок ТВЧ; делает закалку экологически чистой. Работу на ней легко осваивают сварщики 2-3 разрядов. Закалка установкой УДГЗ-200 может быть механизирована, автоматизирована и роботизирована. Благодаря установке УДГЗ-200 увеличена номенклатура закаливаемых изделий и решён ряд важных проблем на ведущих предприятиях Урала: ОАО “ЧМК”, ОАО “НТМК”, ОАО “ВСМПО-АВИСМА”, ОАО “ЧТПЗ”, ОАО “КГОК” и других. Через пять лет после разработки установка УДГЗ-200 прошла сертификацию, и по ТУ 3862-001-47681378-2007 было начато её промышленное производство. К концу 2012 г. выпущено более 40 установок, которые поставлены на предприятия России, Украины, Казахстана.

Перечень ссылок

  1. Селиванов М.В., Шепелев Н.С. Применение плазмы для упрочнения за рубежом. – М.: ЦНИИ информ. и техн.-эконом. исслед. чёрной металлургии, 1985. – Вып. 2. – 23 с.
  2. Поверхностное упрочнение сталей плазменной закалкой / В.А. Линник, А.К. Онегина, А.И. Андреев и др. // МиТОМ, 1983. – № 4. – С. 2-4.
  3. Использование микроплазменного нагрева в процессах упрочняющей технологии / Кобяков О.С., Гринзбург Е.Г. // Автоматическая сварка, 1985. – № 5. – С. 65-67.
  4. Структура и свойства сталей, упрочнённых плазменной струёй / Л.К. Лещинский, И.И. Пирч, С.С. Самотугин и др. // Сварочное производство, 1985. – № 11. – С. 20-22.
  5. Плазменная закалка деталей технологического оборудования / А.А. Бердников, М.А. Филиппов, Р.И. Силин, И.Н. Веселов // Тез. докл. научн.-технич. конф. “Прогрессивные технологии упрочнения”. – Пенза: ПДН-ТП, 1986. – С. 69-70.
  6. Коротков В.А., Бердников А.А., Толстов И.А. Восстановление и упрочнение деталей и инструмента плазменными технологиями. – Челябинск: Металла, 1993. – 144 с.
  7. Упрочнение чугунных валков методом плазменной закалки / А.А. Бердников, В.С. Демин, Е.Л. Серебрякова и др. // Сталь, 1995. – № 1. – С. 56-59.
  8. Восстановление и упрочнение роликов рольгангов / В.А. Коротков, Л.В. Баскаков, И.А. Толстов, А.А. Бердников // Сварочное производство, 1991. – № 3. – С. 31-33.
  9. Способ восстановления стальных деталей. А.с. 1671706 (СССР). – Бюл. 31, 1991.
  10. Плазменная закалка сканируемой дугой без оплавления / В.А. Коротков, О.В. Трошин, А.А. Бердников // Физика и химия обработки материалов, 1995. – № 2. – С. 106-111.
  11. Сафонов Е.Н., Журавлев В.И. Поверхностное упрочнение железоуглеродистых сплавов дуговой закалкой // Сварочное производство, 1997. – № 10. – С. 30-32.

УДК 621.791

Д.С. Белинин, В.С. Верхорубов, П.С. Кучев, Н.Н. Струков, Ю.Д. Щицын D.S. Belinin, V.S. Verkhorubov, P.S. Kuchev, N.N. Strukov, Y.D. Shitcin

Пермский национальный исследовательский политехнический университет Perm National Science Polyechnical University

ПЛАЗМЕННАЯ ЗАКАЛКА ТЯЖЕЛОНАГРУЖЕННЫХ ДЕТАЛЕЙ ИЗ СТАЛИ 40Х13

PLASMA SURFACE HARDENING OF HARD LOADING CONSTRUCTIONS MADE OF STEEL 40X13

Изложена технология плазменной поверхностной закалки с оплавлением поверхности изделий из стали 40Х13. Приведены структура, твердость упрочненного слоя и внешний вид поверхности после обработки.

Ключевые слова: плазма, поверхностная закалка, твердость, износостойкость, большая глубина.

The paper presented the technology of plasma surface hardening of surface melting of steel products 40Ch13. Given structure, the hardness of the hardened layer and the surface appearance after treatment.

Keywords: plasma, surface hardening, hardness, wear resistance, great depth.

Решение вопросов повышения надежности, экономичности и ресурса выпускаемых деталей и узлов машин, агрегатов, ответственных конструкций требует применения материалов, способных работать в различных агрессивных средах, в условиях высокого перепада температур и давлений, повышенных вибраций при переменных контактных, ударных, статических нагрузках и т.д. . Возможность продолжительной эксплуатации таких изделий во многом связана с износостойкостью материалов, из которых они изготовлены. Многие параметры изделия в основном определяет состояние поверхностного слоя материала, из которого оно изготовлено. Поэтому использование дефицитных и дорогостоящих конструкционных материалов во всем объеме изделия нецелесообразно. Перспективным направлением решения этой проблемы представляется упрочняющая термическая обработка (закалка) рабочей поверхности изделий плазменной дугой. Основной отличительной особенностью метода плазменного поверхностного упрочнения является возможность получения скоростей нагрева и охлаждения материалов, на не-

сколько порядков превышающих значения, характерные для традиционных методов упрочнения (печной закалки, закалки ТВЧ, газопламенной закалки и др.), что способствует получению упрочненных слоев с недостигаемым ранее уровнем эксплуатационных свойств .

Сталь 40Х13 - высоколегированная, коррозионностойкая, жаропрочная сталь мартенситного класса (табл. 1).

Таблица 1

Химический состав стали 40Х13

стали С Бі Мп Б р Сг Мі Мо V прочие

40Х13 0,35-0,44 < 0,8 < 0,8 5 О, 0, VI < 0,025 12,0-14,0 - - - -

Хромистые стали рассматриваемой группы помимо высокой коррозионной стойкости обладают и другими важными свойствами - повышенными жаропрочностью и жаростойкостью. Повышенная жаропрочность высокохромистых сталей даже без дополнительного легирования связана с высоким содержанием хрома в твердом растворе; отношение Сг/С в этих сталях значительно выше критического. Кроме того, при достаточном содержании углерода в таких сталях они закаливаются на мартенсит даже при охлаждении на воздухе .

При высоких механических и антикоррозионных свойствах высокохромистые стали имеют пониженные технологические свойства, в том числе пониженную свариваемость, склонность к отпускной хрупкости, образованию ликваций, холодных трещин. Это связано с особенностями фазового состояния высокохромистых сталей и особенностями структурных и фазовых превращений, происходящих при нагреве и охлаждении.

Повышенная склонность мартенситных сталей к хрупкому разрушению в состоянии закалки усложняет технологию их обработки. При содержании углерода более 0,1 % мартенситные стали склонны к образованию холодных трещин из-за высокой степени тетрагональности кристаллической решетки мартенсита. Мартенситное превращение в них имеет две особенности, отрицательно влияющие на образование холодных трещин. При охлаждении сталей с температур нагрева аустенитного состояния (полного или частичного) мартенситный распад происходит в широком интервале скоростей охлаждения, что обусловливает обязательное образование в обработанной зоне полностью мартенситной структуры, иногда даже с некоторым количеством аустенита (повышенное содержание углерода, легирование никелем) или феррита (низкое содержание углерода, легирование ферритообразующими элементами).

Другая особенность мартенситного превращения, обусловливающая повышенную склонность к образованию холодных трещин, состоит в том, что мар-тенситный распад происходит при пониженной температуре (около 150 °С), исключающей протекание процессов самоотпуска. Образующийся в этих условиях мартенсит имеет повышенный уровень микронапряжений и плотность дислокаций, оказывающихся заблокированными, поэтому обладает повышенной хрупкостью.

Еще одна особенность сталей мартенситного класса осложняет технологические условия поверхностной обработки. В связи с тем, что мартенситные стали, в том числе и жаропрочные высокохромистые, являются термически улучшаемыми и используются после закалки и высокого отпуска, участки ЗТВ, нагревавшиеся при обработке до температуры, близкой к Ас1 разупроч-няются. Чтобы избежать такого разупрочнения, требуется проведение сложной термообработки.

В связи с указанным сочетанием свойств высокохромистые стали находят широкое применение в производстве большинства современных деталей машин, элементов конструкций и технологического инструмента. Как правило, такие изделия работают в условиях циклических нагрузок, при воздействии окислительных процессов, а также абразивных частиц. При этом максимальные повреждения и интенсивное изнашивание локализованы в поверхностном рабочем слое детали. В связи с этим особую актуальность приобретают задачи поверхностного упрочнения за счет изменения свойств и механизма изнашивания только рабочего слоя.

Плазменная поверхностная закалка может осуществляться как с оплавлением, так и без оплавления поверхности. Обработка без оплавления обеспечивает сохранение параметров шероховатости поверхности, достигнутых предшествующей механической обработкой. В этом случае термообработка является финишной операцией и легко встраивается в технологический процесс изготовления или ремонта. Обработка с оплавлением рекомендуется для повышения твердости и износостойкости переплавленного слоя высокоуглеродистых сталей.

Целью данной работы являлась разработка технологии плазменной закалки поверхности плиты и валка опорной пары мостовой конструкции. Опорная пара является тяжело нагруженным элементом мостовой конструкции и представляет собой каток, перемещающийся по поверхности плиты. Конструкция достаточно массивная и габаритная: вес катка 350 кг, плиты - 70 кг. Для обеспечения надежности такой конструкции к поверхности плиты предъявляются следующие требования: твердость на поверх-

ности не ниже 50 ИЯС, глубина упрочненного слоя 4 мм твердостью не ниже 42 ИЯС.

Для проведения плазменной закалки был собран стенд на базе универсального наплавочного станка У-653 (рис. 1). Для выполнения закалки использовалось многоцелевое оборудование для плазменной обработки металлов, разработанное на кафедре «Сварочное производство и технология конструкционных материалов» Пермского национального исследовательского политехнического университета.

Рис. 1. Установка для проведения плазменной закалки: 1 - источник питания ВД-306Ф; 2 - наплавочный станок У-653; 3 - пульт управления; 4 - плазмотрон; 5 - изделие; 6 - вентиль подачи воды; 7 - распределитель воды; 8 - баллоны с аргоном

Технологические параметры процесса плазменной поверхностной закалки включают в себя величину и полярность тока, скорость перемещения плазмотрона относительно изделия, расход защитного и плазмообразующего газов, диаметр плазмообразующего сопла (табл. 2). Упрочнение поверхности заданной площади достигается последовательным формированием локальных зон закалки в виде протяженных полос встык (рис. 2-4), с зазором или с перекрытием между ними. Данная работа проводилась в варианте плазменной закалки на токе прямой полярности с оплавлением поверхности без перекрытия и без зазора между упрочненными зонами на следующих режимах:

Таблица 2

Режимы плазменной поверхностной закалки

Величина тока /св, А Полярность тока Величина скорости перемещения плазмотрона V, м/ч Расход плазмообразующего газа Qro л/мин Расход защитного газа Qз, л/мин

Рис. 2. Вид процесса плазменной закалки Рис. 3. Внешний вид поверхности

после обработки

Рис. 4. Макрошлиф поперечного сечения закаленного слоя

Упрочнение рабочей поверхности изделия с помощью плазменной поверхностной закалки с оплавлением поверхности обеспечивает формирование поверхностного слоя с высокими показателями твердости. Это достигается благодаря изменению физико-механических характеристик поверхностного слоя, вследствие образования специфической структуры и фазового состава металла с высокой твердостью и дисперсностью . Однако получить бездефектный слой с равномерно распределенными свойствами, без наличия крупных включений, трещин достаточно трудно. С целью подтверждения эффекта от плазменной закалки (повышение эксплуатационных свойств детали, отсутствие трещин в упрочненном слое) было проведено металлографическое исследование и замеры микротвердости основных зон полученных образ-цов-свидетелей, результаты которого представлены в табл. 3, 4 и на рис. 5, 6.

Рис. 5. Микроструктура и замеры микротвердости закаленного слоя (переход от литой структуры к игольчатой)

Рис. 6. Микроструктура и замеры микротвердости закакленного слоя (переход от зернистой структуры к основному металлу)

Таблица 3

Изменение твердости по глубине упрочненной поверхности плиты после механической обработки (шлифовка поверхности)

Глубина, мм 0,35 0,75 1,15 1,55 1,95 2,35 2,75 3,15 3,55 3,95 4,35 4,55

Твердость, ЫЯС 52 50 48 51 55 53 56 57 49 46 44 40

Структура Литая Игольчатая Зернистая

Таблица 4

Изменение микротвердости по ширине упрочненной поверхности

№ п/п Расстояние от центра, мм Твердость, ЫЯС

Таким образом, после плазменной поверхностной закалки с оплавлением поверхности качество упрочненного слоя полностью удовлетворяет установленным требованиям, что дает основание рекомендовать разработанную технологию обработки как эффективную для изделий из сталей типа 40Х13, работающих в условиях высоких контактных нагрузок и перепада температур.

Сделаем следующие выводы:

1. Разработана технология, позволяющая получить бездефектный упрочненный слой глубиной до 5 мм с равномерно распределенными прочностными свойствами по сечению с сохранением исходных свойств сердцевины детали.

2. Максимальные значения твердости достигаются вблизи центра закаленной зоны. При этом, в связи с эффектом отпуска закаленной стали при повторном нагреве, значение твердости в области стыковки двух последовательно упрочненных участков незначительно уменьшается.

3. Минимальная деформация обрабатываемого изделия снижает трудоемкость последующей механической обработки.

Список литературы

1. Тюрин Ю.Н., Жадкевич М. Л., Мазунин В.М. Упрочнение металлических изделий с использованием импульсно-плазменной технологии // Сварщик в России. - 2007. - № 1. - С. 48-52.

2. Сафонов Е.Н. Новые материалы и технологические процессы для продления ресурса прокатных валков / НТИ(ф) УГТУ-УПИ. - Нижний Тагил, 2005.- С. 275.

3. Влияние технологии поверхностного упрочнения высококонцентрированным источником нагрева на структуру и трещиностойкость наплавленного металла и углеродистых сталей / Л.К. Лещинский [и др.]. // Сварочное производство. - 1987. - № 5. - С. 3-5.

4. Плазменное поверхностное упрочнение / Л.К. Лещинский [и др.]. // Тэхника. - 1990. - 109 с.

5. Сафонов Е.Н., Журавлев В.И. Поверхностное упрочнение железоуглеродистых сталей дуговой закалкой // Сварочное производство - 1997. - № 10. -С.30-32.

1. Плазменная закалка

2. Плазменная нитроцементация

В общем виде стадии изнашивания поверхности трения выглядят следующим образом, рис. 2.56.

Стадия начального изнашивания (приработка) характеризуется приобретени­ем стабильной шероховатостью поверхностей трения. Стадия установившегося из­нашивания характеризуется изменением микро- и макрогеометрия трения и постепенным увеличением интенсивности изнашивания. Процесс установившегося изнашивания заключается в деформировании, разрушении и непрерывном воссоздании

на отдельных участках поверхности слоя со стабильными свойствами. По мере истирания поверхностного слоя с повышенной износостойкостью открываются по­верхности с нестабильными свойствами, что вызывает катастрофический износ. Рис. 2.56а соответствует случаю, когда во время этапа приработки накапливаются факторы, которые после окончания приработки ускоряют процесс изнашивания.

Рис. 2.56б соответствует случаю, когда отсутствует этап приработки, апериод установившегося изнашивания наступает сразу после начала работы (металлообрабатывающий, деревообрабатывающий, медицинский инструмент, рабочие органы машин и т. д.). Рис. Рис. 2.56в соответствует случаю, когда детали находятся под действием контактных напряже­ний и длительное время работают практически без истирания. Основной механизм износа - усталостное выкрашивание поверхностных слоев.

Проведенные испытания на износостойкость сталей после различных видов термообработки при различных видах трения, показали существенные преимущест­ва плазменного поверхностного упрочнения перед традиционными способами. Ре­зультаты испытания в условиях сухого трения на воздухе по пальчиковой схеме образцов стали 20, 45, 40Х, ЗОХГСА, прошедших плазменную закалку (без оп­лавления) представлены в табл. 2.20.

Результаты испытаний на износостойкость стали 40Х

Вид обработки

Плазменная закалка 415 5 0,28 13,8 0,69
Закалка ТВЧ 360 14 0,40 17,9 1,98

N y – общее число;

N кр – число циклов до приработки;

f тр – коэффициент трения;

S – среднее значение площади поперечного сечения дорожки износа;

I – путь трения

Из таблицы видно, что плазменная закалка снижает износ и коэффициент поения, а также количество циклов до приработки. Это обусловлено морфологическими особенностями упрочненного слоя после плазменной закалки.

При плазменном упрочнении с перекрытием дорожек упрочнения происхо­дит уменьшение микротвердости в зоне перекрытия (~ 10-30 %) . Однако, как показали исследования, интенсивного изнашивания в зоне перекрытия не наблюдается, так как эти зоны занимают значительно меньшую площадь, по сравнению с зонами закалки и при их изнашивании проявляется «теневой эффект» .

При упрочнении с оплавлением поверхности износостойкость упрочненного

слоя снижается (по сравнению с упрочнением без оплавления). Особенностью мартенситной структуры оплавленного слоя является ее столбчатый характер. Дис­персность мартенсита в оплавленной зоне, не смотря на высокие скорости охлажде­ния, зависит от химического

состава стали. Так, для стали

30ХГСА,30ХС,30ХГСН2А,

38Х2МЮА в оплавленной зоне зафиксирован мелкоигольчатый мартенсит, а в стали 20,30,45, 55, 9ХФ, 9ХФМ, 8Н1А, 40ХН -«крупноигольчатый».

Кроме того, в структуре оплавленной зоны обнаружено повышенное содержание остаточного аустенита (20-60%).

По мнению плазменное упрочнение с оплавлением поверхности наиболее эффективно для деталей, работающих в условиях интенсивного износа, но неиспытывающих значительныхударных и знакопеременных нагрузок.

Износостойкость стали 30ХГСА, 9 ХФ, 50ХН, 150 ХНМ после плазменного упрочнения (без оплавления) возрастает в 2,5-4 раза, по сравнению с объемной закалкой при испытаниях по схе­ме «вращающееся кольцо - неподвижная колодка» на машине трения МИ-1М (9) (в масляно - абразивной среде).

Оценка износостойкости конструкционных сталей, прошедших плазменное азотирование из газовой фазы (по различным режимам), показала, что износостой­кость сталей 20 возрастает в 1,3-1,5 раза по сравнению с плазменной закалкой и в 3-6 раз по сравнению с объемной закалкой рис. (испытание на машине СМУ-2).

Износостойкость нитроцементированного слоя на сталях 20, 45 в условиях сухого трения возрастает по сравнению с объемной ХТО, рис.

Дополнительная обработка холодом (кривая 5, рис. 2.58.) снижает содержание остаточного аустенита в нитроцементированном слое и, как следствие этого, увеличивается износостойкость.

Сравнительные испытания образцов стали 45, 40Х на износостойкость при различных способах упрочнения показали, что плазменная закалка не уступает электронно-лучевой и лазерной закалке, табл. 2.21.

Рис. 2.58. Влияние режима плазменного легирования

на износостойкость стали 45.

1- исходное состояние

2- объемная ХТО /нитроцементирование/

3- плазменная нитроцементация из газовой фазы

4- плазменная нитроцементация из твердойй фазы

5 - плазменная нитроцементация из твердой фазы + обработка холодом.

Из всех видов изнашивания, встречающегося в промышленности, наиболее часто проявляется абразивный износ. Согласно детали машин и инструмен­ты, эксплуатирующиеся в различных условиях работы, наиболее часто испытывают абразивный износ (до 60-70 %). Абразивное изнашивание наиболее часто вызывает разрушение поверхности детали в результате ее взаимодействия с твердыми частицам. К твердым частицам! относятся:

Неподвижно закрепленные твердые зерна, входящие в контакт по каса­тельной,

либо под небольшим углом атаки к поверхности детали;

Незакрепленные частицы, входящие в контакт с поверхностью детали;

Свободные частицы в зазоре сопряжения детали;

Свободные частицы, вовлекаемые в поток жидкостью или газом.

Испытание на абразивное изнашивание проводят по двум схемам взаимо­действия поверхности материала с абразивом: при трении и при ударе об абразив­ную поверхность . Методики испытаний, оборудование подробно изложены в работах , поэтому нет необходимости их описания, остановимся на резуль­татах испытаний. В качестве критерия оценки износостойкости упрочненных материалов использовалась относительная износостойкость, которая выражается отно­шением износа эталона к износу (линейному, весовому или объемному) исследуемого образца.

Самый простой способ оценки относительной износостойкости материалов – взвешивание образцов до и после испытания на абразивное изнашивание.


Сравнительные испытания на износостойкость пар трения шарик-цилиндрический образец

Способ упрочнения марки стали, образца

Линейный, мкм

По массе, мг

Суммарный

Линейный, км

По массе, мг

1. Электронно-лучевое упрочнение, 40Х

2. Лазерное упрочнение

3. Плазменное упрочнение40Х

4. Закалка ТВЧ

5. Объемная закалка

6. Азотирование 20

7. Цементация 20

Закалку непосредственно под электровозом или вагоном (без выкатки колесных пар) . За восемь лет работы на ВСЖД открыты 12 участков плазменного упрочнения гребней колесных пар и обработано более 35 500 колесных пар. В течение этих лет проводились исследования триботехнических свойств упрочненных колесных пар на фиксированном участке ВСЖД, а именно на горном участке Иркутск-Слюдянка. Выбор...

Триботехника,-М.: Машиностроение, 1985. Лахтин Ю.М. и др. Материаловедение: Учебник для ВУЗов, 3е издание. М.: машиностроение 1990. Плазменное поверхностное упрочнение / Лещинский Л.К. и др.- К.: Техника, 1990. Повышение несущей способности деталей машин алмазным выглаживанием / Яценко В.К. и др.- М.: Машиностроение,1985. Упрочнение поверхностей деталей комбинированными способами / А.Г. Бойцов и...

Перемещения луча приведено на рис. 1.5. Наблюдаемые различия в структуре и твёрдости слоёв зоны в стали 35, обрабатываемой непрерывным излучением лазера на СО2, объясняют различными условиями их нагрева и охлаждения. 1.6. Упрочнение кулачка главного вала В течение последних трёх – пяти лет появились мощные газовые лазеры, обеспечивающие в режиме непрерывной генерации мощность порядка...


Является то, что рабочий стол 6 с обрабатываемыми образцами 5 размещается внутри данного устройства. Разрабатываемое оборудование позволит осуществлять имплантацию ионов азота с энергией 1 – 10 кэВ (Дж) в металлы и сплавы, модифицируя их свойства в нужном направлении. Заключение Несмотря на большое количество исследований в области ионной имплантации, остаётся ещё множество вопросов, ...

прогрессивный метод локального поверхностного упрочнения, многократно повышающий надежность и долговечность изделий

СУЩНОСТЬ ПЗ состоит в высокоскоростном нагреве потоком плазмы поверхностного слоя металла и быстром его охлаждении в результате передачи тепла в глубинные слои материала детали.

ЦЕЛЬ ПЗ - изготовление деталей и инструмента с упрочненным поверхностным слоем толщиной до нескольких миллиметров при неизменном общем химическом составе материала и сохранении во внутренних слоях первоначальных свойств исходного металла.

МАТЕРИАЛЫ, ПОДВЕРГАЕМЫЕ ПЗ - инструментальные стали, чугуны, твердые сплавы, цементированные и нитроцементированные стали, цветные сплавы и другие материалы.

ЭФФЕКТ ОТ ПЗ определяется повышением эксплуатационных свойств детали, благодаря изменению физико-механических характеристик поверхностного слоя, вследствие образования специфической структуры и фазового состава металла с высокой твердостью и дисперсностью, а также получения на поверхности сжимающих остаточных напряжений.

ОБОРУДОВАНИЕ ДЛЯ ПЗ состоит из источника питания дуги, малогабаритного плазмотрона и механизма для перемещения плазмотрона или детали. В качестве источника питания используются установки плазменной сварки и наплавки УПНС-304, плазменной обработки УПО-302, УПВ-301, плазменной резки УПРП-201, сварочные выпрямители ВД-201, ВД-306, ВДУ-506 и другие. Плазмотрон изготавливается по оригинальным конструкторским разработкам. Механизмом для перемещения может служить серийное механическое, сварочное или наплавочное оборудование.

ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ПЗ состоит из предварительной очистки (любым известным методом) и непосредственно ПЗ обрабатываемой поверхности путем перемещения изделия относительно плазмотрона или наоборот. Возможны следующие технологические варианты ПЗ - без оплавления и с оплавлением поверхности детали, с промежутками между упрочненными зонами или без них. Параметры процесса ПЗ - ток плазменной дуги (струи), расход плазмообразующего газа, расстояние между плазмотроном и изделием, скорость перемещения определяются алгоритмом, обеспечивающим получение оптимальных свойств в поверхностном слое упрочняемой детали. Интегральная температура нагрева в процессе ПЗ не превышает 150..200° С. В качестве плазмообразующего газа используются, как правило, аргон или его смеси с азотом, а также воздух. Средняя ширина закаленной зоны 6..13 мм.

КОНТРОЛЬ КАЧЕСТВА ПЗ обработанной поверхности осуществляется визуально по наличию и сравнению цветовой окраски с эталоном, а также по увеличению твердости образца-свидетеля после ПЗ.

ОСНОВНЫЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ПЗ определяются применением сварочных источников нагрева и требуют использования вытяжной вентиляционной системы и защиты органов зрения от излучения.

ПРИМЕРЫ ПРИМЕНЕНИЯ ПЗ: режущий и мерительный инструмент, штампы, напильники; контуры резьбы ходовых винтов, шестерен, зубчатых колес, реек; рабочие профили кулачков, копиров, а также разнообразных пазов, канавок, отверстий; направляющие, шпиндели, валы, оси, штоки; детали фотоаппаратов, текстильных машин, ножи для обработки дерева, бумаги, синтетических материалов; рамные и дисковые пилы, иглы, лезвия бритв, прокатные валки, коленчатые и распределительные валы, детали газораспределительных механизмов двигателей и т.д.

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ПЗ. По сравнению с аналогами - способами поверхностного упрочнения токами высокой частоты, газовым пламенем, химико-термической обработки, лазерным и электронно-лучевым упрочнением, данный процесс имеет ПРЕИМУЩЕСТВА:

низкие интегральные температуры нагрева деталей;

большая глубина упрочненного слоя по сравнению, например, с лазерной закалкой;

высокий эффективный КПД нагрева плазменной дугой до (85%), для сравнения, при лазерном

упрочнении - 5%;

отсутствие применения специальных дополнительных химических препаратов или веществ;

возможность ведения процесса без применения охлаждающих сред, вакуума, специальных

покрытий для повышения поглощательной способности упрочняемых поверхностей;

в отличие от лазерного оборудования, отсутствие специальных хладоагентов для охлаждения;

простота, низкая стоимость, маневренность, малые габариты технологического оборудования;

возможность автоматизации и роботизации технологического процесса.

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПЗ определяется:

повышением работоспособности и износостойкости деталей и инструмента;

сокращением затрат на изготовление запасных деталей и дополнительного количества инструмента для выполнения заданной производственной программы;

уменьшения объема заточных операций, времени и средств, связанных с настройкой прессов и металлообрабатывающих станков для инструмента, подвергнутого ПЗ;

высвобождением работников, занятых на изготовлении запасных деталей и дополнительного количества инструмента;

интенсификацией режимов работы инструмента;

увеличением выпуска продукции на существующем оборудовании, вследствие сокращения простоев для замены изношенных деталей и аварийных ремонтов оборудования.

© autonomichouse.ru, 2024
Автономный дом