Выбор цикла парогазовой установки и принципиальной схемы пгу. Принцип действия и технические характеристики пгу, работающей по утилизационной схеме Особенности парогазовых установок

22.11.2023

К теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100-150° С, нагреваемая отбираемым из турбины паром. Пар из парового котла поступает по паропроводу в турбину где он расширяется до давления в конденсаторе и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины и соединенного с ним ротора генератора. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя. Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электроэнергии и производству и отпуску теплоэнергии.

Газотурбинные установки (ГТУ) состоят из трех основных элементов: воздушного компрессора, камеры сгорания и газовой турбины. Воздух из атмосферы поступает в компрессор, приводимый в действие пусковым двигателем, и сжимается. Далее под давлением его подают в камеру сгорания, куда одновременно подводится топливным насосом жидкое или газообразное топливо. Для того чтобы снизить температуру газа до приемлемого уровня (750-770° С), в камеру сгорания подают в 3,5-4,5 раза больше воздуха, чем нужно для сгорания топлива. В камере сгорания он разделяется на два потока: один поток поступает внутрь жаровой трубы и обеспечивает полное сгорание топлива, а второй обтекает жаровую трубу снаружи и, подмешиваясь к продуктам сгорания, снижает их температуру. После камеры сгорания газы поступают в газовую турбину, находящуюся на одном валу с компрессором и генератором. Там они, расширяясь (примерно до атмосферного давления), совершают работу, вращая вал турбины, и затем выбрасываются через дымовую трубу. Мощность газовой турбины значительно меньше мощности паровой турбины и в настоящее время КПД около 30%.

Парогазовые установки (ПГУ) представляют собой сочетание паротурбинной (ПТУ) и газотурбинной (ГТУ) установок. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД по сравнению с отдельно взятыми ПТУ и ГТУ. Кроме того, при таком объединении достигается ряд конструктивных преимуществ, приводящих к удешевлению установки. Распространение получили два типа ПГУ: с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла. Высоконапорный котел работает на газовом или очищенном жидком топливе. Дымовые газы, выходящие из котла с высокой температурой и избыточным давлением, направляются в газовую турбину, на одном валу с которой находятся компрессор и генератор. Компрессор нагнетает воздух в топочную камеру котла. Пар из высоконапорного котла направляется к конденсационной турбине, на одном валу с которой находится генератор. Отработавший в турбине пар переходит в конденсатор и после конденсации насосом подается снова в котел. Выхлопные газы турбины подводятся к экономайзеру для подогрева питательной воды котла. В такой схеме не требуется дымосос для удаления отходящих газов высоконапорного котла, функцию дутьевого насоса выполняет компрессор. КПД установки в целом достигает 42-43%. В другой схеме парогазовой установки осуществляется использование теплоты отработавших газов турбины в котле. Возможность сброса отработавших газов турбины в топочную камеру котла основывается на том, что в камере сгорания ГТУ топливо (газ) сжигают с большим избытком воздуха и содержание кислорода в выхлопных газах (16-18%) является достаточным для сжигания основной массы топлива.



29. АЭС: устройство, типы реакторов, параметры, режимные характеристики.

АЭС относятся к тепловым ЭС, т.к. в их устройстве есть тепловыделители, теплоноситель и генератор эл. тока – турбина.

АЭС могут быть конденсационными, теплофикационными (АТЭЦ), атомные станции теплоснабжения (АСТ).

Ядерные реакторы классифицируются по различным признакам:

1. по уровню энергии нейтронов:

На тепловых нейтронах

На быстрых нейтронах

2. по виду замедлителя нейтронов: водными, тяжеловодными, графитовыми.

3. по виду теплоносителя: водными, тяжеловодными, газовыми, жидко металлическими

4. по числу контуров: одно-, двух-, трех- контурные

В современных реакторах для деления ядер исходного топлива используются в основном тепловые нейтроны. Все они имеют прежде всего так называемую активную зону , в которую загружается ядерное топливо, содержащее уран 235 замедлитель (обычно графит или вода). Для сокращения утечки нейтронов из активной зоны последнюю окружают отражателем, выполненным обычно из того же материала, что и замедлитель.

За отражателем снаружи реактора размещается бетонная защита от радиоактивных излучений. Загрузка реактора ядерным топливом обычно значительно превышает критическую. Чтобы по мере выгорания топлива непрерывно поддерживать реактор в критическом состоянии, в активную зону вводят сильный поглотитель нейтронов в виде стержней из карбамида бора. Такие стержни называютрегулирующими или компенсирующими. В процессе деления ядра выделяется большое количество теплоты, которая отводиться теплоносителем в теплообменник парогенератора , где она превращается в рабочее тело – пар. Пар поступает в турбину и вращает ее ротор, вал которого соединен с валом генератора . Отработавший в турбине пар попадает в конденсатор , после которого сконденсированная вода вновь идет в теплообменник, и цикл повторяется.

Сочетание паротурбинной и газотурбинной установок, объединяемых общим технологиче­ским циклом, называют парогазовой установ­кой (ПГУ) электростанции. Соединение этих установок в единое целое позволяет снизить потерю теплоты с уходящими газами ГТУ или парового котла, использовать газы за газовы­ми турбинами в качестве подогретого окисли­теля при сжигании топлива, получить допол­нительную мощность за счет частичного вытеснения регенерации паротурбинных уста­новок и в конечном итоге повысить КПД паро­газовой электростанции по сравнению с паро­турбинной и газотурбинной электростанциями.

Применение ПГУ для сегодняшней энерге­тики - наиболее эффективное средство значи­тельного повышения тепловой и общей эконо­мичности электростанций на органическом топливе. Лучшие из действующих ПГУ имеют КПД до 46%, а проектируемые - до 48-49%, т. е. выше, чем на проектируемых МГД-установках.

Среди различных вариантов ПГУ наи­большее распространение получили следую­щие схемы: ПГУ с высоконапорным парогене­ратором (ВПГ), ПГУ со сбросом газов газо­вой турбины в топку парового котла, ПГУ с утилизационным паровым котлом (УПК), полузависимые ПГУ, ПГУ с внутри цикловой газификацией твердого топлива.

Разработанные в НПО ЦКТИ ПГУ с вы­соконапорным парогенератором работают на природном газе или на жидком газотурбин­ном топливе (рис. 9.8). Воздушный компрес­сор подает сжатый воздух в кольцевой зазор корпуса ВПГ и в дополнительную камеру сгорания ДКС, где его температура повыша­ется. Горячие газы после сжигания топлива в топочной камере имеют давление 0,6- 1,2 МПа в зависимости от давления воздуха за компрессором и используются для генера­ции пара и его перегрева. После промежуточ­ного перегревателя - последней поверхности нагрева ВПГ - газы с температурой пример­но 700 °С поступают в дополнительную каме­ру сгорания, где догреваются до 900 °С и по­ступают в газовую турбину. Отработавшие в газовой турбине газы направляются в трех­ступенчатый газоводяной экономайзер, где они охлаждаются питательной водой и основ­ным конденсатом паровой турбины. Такое подключение экономайзеров обеспечивает по­стоянную температуру уходящих газов 120- 140 °С перед их выходом в дымовую трубу. Вместе с тем в такой ПГУ происходит час­тичное вытеснение регенерации и увеличение мощности паротурбинной установки.


Рис. 9.8. Принципиальная тепловая схема парогазовой установки ПГУ-250 с высоконапорным парогенера­тором ВПГ-600-140:

БС - барабан-сепаратор; ПЕ - пароперегреватель; ПП - промежуточный перегреватель; И - испарительные поверхности нагре­ва; ЦН- циркуляционный насос; ЭК1 - ЭКШ - газоводяные экономайзеры утилизации теплоты уходящих газов ГТУ; ДПВ - деаэратор питательной воды; ДКС - дополнительная камера сгорания

Высоконапорный парогенератор является общей камерой сгорания топлива для паро­турбинной и для газотурбинной установки. Особенностью такой ПГУ является и то, что избыточное давление газов в схеме позволяет не устанавливать дымососы, а воздушный компрессор заменяет дутьевой вентилятор; от­падает необходимость в воздухоподогревателе. Пар из ВПГ направляется в паротурбинную установку, имеющую обычную тепловую схему.

Существенным преимуществом данной ус­тановки является уменьшение габаритов и массовых показателей ВПГ, работающего придавлении в газовом тракте 0,6-1,2 МПа. Высоконапорный парогенератор целиком из­готавливается в заводских условиях. В соот­ветствии с требованиями транспортировки паропроизводительность одного корпуса ВПГне превышает 350-10 3 кг/ч. Парогенератор ВПГ-650-140-545/545 ПО ТКЗ, например, состоит из двух корпусов. Его газоходы экра­нированы сварными газоплотными панелямииз оребренных труб.

ПГУ с ВПГ целесообразно применять при умеренных температурах газов перед ГТУ. С увеличением этой температуры уменьшается доля теплоты, передаваемой газами поверх­ности нагрева высоконапорного парогенера­тора.

Автономная работа паровой ступени ПГУ с ВПГ невозможна, что является недостатком этой схемы, требующей равной надежности газотурбинной установки, паровой турбины, парогенератора. Применение ГТУ со встроен­ными камерами сгорания (например, ГТЭ-150) также недопустимо.

Использование ПГУ с ВПГ перспективно в схемах с внутрицикловой газификацией угля.

На рис. 9.9 показана компоновка ПГУ-200-250 с турбинами К-160-130 и ГТ-35-770 или К-210-130 и ГТ-45-3. Аналогич­ная установка ряд лет успешно работает на Невинномысской ГРЭС. Применение таких ПГУ способно обеспечивать экономию топли­ва на ТЭС на 15%, снижение удельных капи­таловложений на 12-20%, снижение метал­лоемкости оборудования на 30% по сравне­нию с паротурбинной ГРЭС.

ПГУ со сбросом газов газовой турбины в топку парового котла характеризуются тем, что уходящие газы газовой турбины являются высокоподогретым (450-550°С) забалласти­рованным окислителем с содержанием кисло­рода 14-16%. По этой причине их целесооб­разно использовать для сжигания основной массы топлива в паровом котле (рис. 9.10). ПГУ по такой схеме реализована и успешно работает на Молдавской ГРЭС (станционные энергоблоки № 11 и 12). Для ПГУ использовано серийное оборудование: паровая турбина К-210-130 ПОТ ЛМЗ на параметры пара 13 МПа, 540/540 °С, газовая турбина ГТ-35-770 ПОАТ ХТЗ, электрогенераторы па­ровой и газовой ступеней ТГВ-200 и ТВФ-63-243, однокорпусный паровой котел с естественной циркуляцией типа ТМЕ-213 производительностью 670*10 3 кг/ч. Котел поставляется без воздухоподогревателя и мо­жет работать как «под наддувом», так и с уравновешенной тягой. Для этого в схеме предусмотрены дымососы ДС. Данная схема ПГУ позволяет работать в трех различных режимах: режим ПГУ и режимы автономной работы газовой и паровой ступеней.



Рис. 9.9. Компоновка главного корпуса ПГУ-250 с высоконапорным парогенератором:

а - поперечный разрез; б - план; обозначения см. на рис. 9.8

Основным является режим работы уста­новки по парогазовому циклу. Уходящие газы газовой турбины (в ее камере сгорания сжи­гается жидкое газотурбинное топливо) пода­ются в основные горелки котла. В горелки по­ступает и подогретый в калорифере недостаю­щий для процесса горения воздух, нагнетае­мый вентилятором дополнительного воздуха ВДВ. Уходящие газы парового котла охлаж­даются в экономайзерах высокого и низкого давления и затем направляются в дымовую трубу. Через экономайзер высокого давления ЭКВД как в режиме ПГУ, так и при авто­номной работе паровой ступени подается при­мерно 50% питательной воды после питатель­ных насосов. Затем вся питательная вода поступает в основной экономайзер котла с температурой 250°С. В экономайзер низкого давления ЭКНД поступает основной конденсат турбины после ПНД5 (при нагрузках больше 50%) либо после ПНД4 (при нагруз­ках ниже 50%). В связи с этим регенератив­ные отборы паровой турбины частично раз­гружены, а давление пара в ее проточной части несколько возрастает; увеличен пропуск пара в конденсатор турбины.


Рис. 9.9. Продолжение

При автономной работе паровой ступени воздух, необходимый для сжигания топлива в котле, подается дутьевым вентилятором ДВ в калориферы, где подогревается до 180 °С и затем направляется в горелки. Паровой котел работает под разрежением, создаваемым ды­мососами ДС. При автономной работе газо­вой ступени уходящие газы направляются в дымовую трубу.

Возможность работы ПГУ в различных режимах обеспечена установкой автоматиче­ски управляемой системы быстрозапорных газовоздушных шиберов (заслонок) большого диаметра, монтируемых на газовоздуховодах для отключения того или иного элемента ус­тановки. Это удорожает схему и снижает ее надежность.

С повышением температуры газов перед газовой турбиной ПГУ и при более низкой степени сжатия воздуха в компрессоре со­держание кислорода в уходящих газах газо­вой турбины уменьшается, что требует подачи дополнительного количества воздуха. Это при­водит к увеличению объема газов, проходя­щих через конвективные поверхности нагрева парового котла, а также потерь теплоты с уходящими газами . Возрастает и расход электроэнергии на привод дутьевого вентиля­тора. При сжигании в котле твердого топлива подогретый воздух используется в системе пылеприготовления.

Опыт эксплуатации ПГУ-250 на Молдав­ской ГРЭС показал, что ее экономичность в значительной степени зависит от нагрузки паровой и газовой ступеней. Удельный расход условного топлива при номинальной нагруз­ке 240-250 МВт достигает 315 г/(кВт-ч).

Парогазовые электростанции подобного типа широко распространены за рубежом (США, Англия, ФРГ и др.). Преимущество ПГУ этого типа заключается в том, что ис­пользуется паровой котел обычной конструк­ции, в котором возможно применение любого вида топлива, в том числе твердого. В камере сгорания ГТУ сжигают не более 15-20% необходимого для всей ПГУ топлива, что уменьшает потребление его дефицитных сортов. Пуск такой ПГУ обычно начинают с пуска ГТУ, использование теплоты уходя­щих газов которой позволяет поднять в паро­вом котле параметры пара и сократить коли­чество топлива, расходуемого на пуск паро­турбинного оборудования.



Рис. 9.10. Принципиальная тепловая схема ПГУ-250 со сбросом газов ГТУ в топку парового котла:

ПЕ- пароперегреватель свежего пара; ПП-промежуточный пароперегреватель; ЭК, ЭКВД, ЭКНД - экономайзеры: основной, вы­сокого и низкого давления; П1 П7 - подогреватели системы регенерации паровой ступени; ДПВ - деаэратор питательной во­ды; ПЭН, КН, ДН - питательный, конденсатный, дренажный насосы; НР - насос рециркуляции основного конденсата в ЭКНД; ДВ, ВДВ - вентиляторы дутьевой и дополнительного воздуха; КЛ1,КЛ11 - калориферы первой и второй ступеней; В - впрыскпитательной воды из промежуточной ступени ПЭН; ДС - дымосос

ПГУ с утилизационными паровыми котла­ми позволяют использовать уходящие газы газовых турбин для генерации пара. На та­ких установках возможна реализация чисто бинарного цикла без дополнительного сжига­ния топлива с получением пара низких пара­метров. На рис. 9.11 приведена предложен­ная МЭИ схема такой ПГУ, в которой ис­пользуются газовая турбина ГТЭ-150-1100 и турбина насыщенного пара К-70-29, применяе­мая на АЭС. Параметры пара перед турби­ной 3 МПа, 230 °С. По условию допустимых температурных перепадов между газами и паром и наиболее полного использования теп­лоты уходящих газов промежуточный паро­перегреватель выполнен газопаровым и размещен за экономайзером по ходу газов. Часть дымовых газов за газовой турбиной вводится в рассечку между испарительной и экономайзерной поверхностями нагрева утилизацион­ного парового котла УПК, что обеспечивает нужный температурный напор. Для таких ус­тановок характерны высокие значения энерге­тического коэффициента ПГУ и использование только вы­сококачественного органического топлива, главным образом природного газа. При тем­пературе наружного воздуха +15°С и темпе­ратуре уходящих газов 160 °С суммарная электрическая мощность ПГУ составляет при­близительно 220 МВт, КПД равен 44,7%, а, удельный расход условного топлива 281 г/(кВт-ч).

Рис. 9.11. Принципиальная тепловая схема ПГУ-220 с котлом-утилизатором и турбиной на насыщенном паре без дожигания топлива:

УПК - утилизационный котел (парогенератор); С - сепаратор влаги; ДН - дренажный насос; остальные обозначения см. на рис. 20.8, 20.10

Всесоюзным теплотехническим институтом и АТЭП разработан вариант маневренной ПГУ без дожигания топлива перед утилиза­ционным паровым котлом. В состав ПГУ включены одна газовая турбина ГТЭ-150-1100, одноцилиндровая паровая турбина мощностью 75 МВт на параметры пара 3,5 МПа, 465 °С при расходе пара 280-10 3 кг/ч, утилизацион­ный паровой котел с поверхностью нагрева 40-10 3 м 2 из оребренных труб. Модуль глав­ного корпуса электростанции такой ПГУ-250 запроектирован однопролетным с шириной пролета 24 м. Газотурбинная установка, па­ровая турбина и электрический генератор между ними смонтированы в виде одновального агрегата. При температуре наружного воз­духа +5 °С ПГУ-250 имеет удельный расход условного топлива 279 г/(кВт-ч).

Применение в схеме ПГУ с котлами-ути­лизаторами более мощных серийных паротур­бинных установок потребует большего расхо­да пара высоких параметров. Это возможно при повышении температуры газов на входе в котел до 800-850 °С за счет дополнитель­ного сжигания до 25% общего расхода топ­лива (природного газа) в горелочных уст­ройствах котла. На рис. 20.12 приведена принципиальная тепловая схема ПГУ-800 та­кого типа по проекту ВТИ и АТЭП. В ее со­став включены две газотурбинные установки ГТЭ-150-1100 ПОТ ЛМЗ, двухкорпусный ути­лизационный паровой котел ЗиО на суммар­ную паропроизводительность 1150-10 3 кг/ч и параметры пара 13,5 МПа, 545/545 °С, паро­вая турбина К-500-166 ПОТ ЛМЗ. Данная схема имеет ряд особенностей. Регенератив­ные отборы турбины (кроме последнего) за­глушены; в системе регенерации имеется только смешивающий ПНД. Применена без-деаэраторная схема с деаэрацией конденсата турбины в конденсаторе и в смешивающем подогревателе. Конденсат с температурой 60 °С подается двумя питательными насосами ПЭ-720-220 в экономайзер котла. Отсутствие регенеративных отборов пара повышает его пропуск в конденсатор турбины, электриче­ская мощность которой ограничена в связи с этим до 450 МВт.

Утилизационный паровой котел П-образной компоновки прямоточного типа состоит целиком из конвективных поверхностей на­грева. В каждый из корпусов УПК после ГТУ поступают уходящие газы в количестве 680 кг/с с температурой 430-520 °С и содержанием кислорода 14-15,5%. В основных горелках УПК сжигается природный газ. а температура газов перед поверхностями на­грева котла повышается до 840-850 °С. Про­дукты сгорания последовательно охлаждай­ся в пароперегревателях (промежуточном и основном), в испарительных и экономайзерных поверхностях нагрева и при температуре ~125°С направляются в дымовую трубу. Специфической особенностью котла являет­ся его работа при значительном массовом расходе газов. Отношение его паропроизводительности к расходу продуктов сгорания в 5-6 раз ниже, чем у обычных паровых кот­лов энергоблоков. В результате этого мини­мальный температурный напор перемещается из зоны промежуточного пароперегревателя (для прямоточного газомазутного котла) на горячий конец экономайзера. Небольшое зна­чение этого температурного напора (20- 40 °С) заставило конструкторов УПК выпол­нить экономайзер из оребренных труб диа­метром 42X4 мм, что снизило его массу, но повысило аэродинамическое сопротивление котла. Вследствие этого несколько уменьши­лась электрическая мощность газотурбинной установки и всей ПГУ.

Основным режимом ПГУ-800 является ее работа по парогазовому циклу, при этом ути­лизационный паровой котел работает под над­дувом. Преимущество таких ПГУ-возмож­ность режимов автономной работы газовой и паровой ступеней. Самостоятельная работа ПГУ происходит при несколько пониженной мощности в связи с повышенным сопротивле­нием выхлопа, осуществляемого транзитом газов через котел-утилизатор. Для обеспече­ния автономной работы паротурбинного блока необходимо некоторое усложнение схемы, в которую дополнительно должны быть вклю­чены шиберы и дымососы. При таком режиме работы закрывают шиберы 1 и 2 (рис. 9.12) и открывают шиберы 3 -5. Основное количе­ство уходящих газов котла (около 70%) обо­гащают воздухом и при помощи дымососа рециркуляции ДР с температурой 80 °С на­правляют к дополнительным горелкам перед котлом. При этом количество сжигаемого в УПК топлива возрастает втрое. Неисполь­зованное количество уходящих газов котла (около 30%) дымососом ДС сбрасывают в ды­мовую трубу.

Для работы ПГУ на резервном жидком газотурбинном топливе необходимо предус­мотреть в тепловой схеме дополнительный подогрев воды до 130-140°С во избежание коррозии хвостовых поверхностей нагрева. Такой режим работы окажется поэтому менее экономичным.

ПГУ с утилизационными паровыми котла­ми обладают высокой маневренностью. Они рассчитаны примерно на 160 пусков в год; время пуска после простоя 6-8 ч равно 60 мин, а после останова на 40-48 ч - 120 мин. При разгружении ПГУ в первую очередь уменьшают нагрузку газотурбинных агрегатов со 100 до 80% прикрытием входных направляющих аппаратов (ВНА) компрессо­ров. Дальнейшее понижение нагрузки произ­водят уменьшением расхода топлива, сжигае­мого в горелках УПК, снижением паропроизводительности последнего с сохранением тем­пературы газов перед газовыми турбинами. При достижении 50% номинальной нагрузки ПГУ одна из ГТУ и соответствующий ей кор­пус УПК отключаются. С понижением нагруз­ки паровой ступени и паропроизводительности УПК происходит перераспределение темпера­тур по тракту, а температура уходящих газов увеличивается до 170-190°С (при 50% на­грузке котла). Это повышение температуры недопустимо по условиям работы дымососов и дымовой трубы. Для поддержания допу­стимой температуры уходящих газов утилиза­ционный паровой котел при пониженных на­грузках переводится с прямоточного в сепара­торный режим работы со сбросом избыточной теплоты в конденсатор паровой турбины. В схеме паротурбинной установки предусмот­рены встроенный сепаратор и растопочный расширитель. Переход на сепараторный ре­жим повышает расход топлива на ПГУ по сравнению с прямоточным режимом работы на 5-10%.

ПГУ с утилизационными паровыми котла­ми целесообразно устанавливать в газоносных районах Западной Сибири, Средней Азии и др. По данным ВТИ ПГУ-800 обладает высо­кими энергетическими показателями. При температуре наружного воздуха +5°С, тем­пературе газов перед газовыми турбинами 1100°С мощность ПГУ составит примерно 766 МВт, а удельный расход условного топли­ва (нетто) - 266 г/(кВт-ч). С изменением температуры воздуха в пределах от +40 до -40 °С мощность ПГУ изменяется в диапазо­не 550-850 МВт вследствие значительного изменения мощности двух ГТУ. Экономия от внедрения ПГУ-800 вместо обычного энерго­блока 800 МВт составит в год 5,7-10 6 руб. (204-10 6 кг условного топлива).

Рис. 9.12. Принципиальная тепловая схема ПГУ-800 с котлом-утилизатором и с дожиганием топлива:

1-5 - переключаемые газоплотные шиберы; ДС - дымосос; ДР - дымосос рециркуляции газов; С - сепаратор влаги; РР - растопочный расширитель; СПИД - смешивающий подогрева­тель низкого давления

Вариант компоновки главного корпуса ПГУ-800 по проекту ВТИ и АТЭП приведен на рис. 9.13. Расчетные капиталовложения в главный корпус ПГУ составляют 89 руб/кВт. Его сооружение позволит сэко­номить на КЭС с шестью блоками ПГУ-800 по сравнению с установкой шести газомазут­ных энергоблоков 800 МВт до 9-10 6 кг стали и до 8-10 6 кг железобетона.

Сочетание газотурбинных и паротурбин­ных установок с использованием типового серийного оборудования осуществляется в полузависимой парогазовой установке (рис. 9.14). Она предназначается для исполь­зования при прохождении пиков графика электрической нагрузки и предполагает пол­ное или частичное отключение подогревателей высокого давления по пару. В результате его пропуск через проточную часть паровой тур­бины повышается и реализуется прирост мощ­ности паровой ступени примерно 10-11%. Понижение температуры питательной воды компенсируется ее дополнительным подогре­вом в газоводяном экономайзере уходящими газами газовой турбины. Температура уходя­щих газов ГТУ снижается при этом примерно до 190 °С. Суммарный прирост пиковой мощности с учетом работы ГТУ составляет 35- 45% базовой мощности паротурбинного блока. Удельный расход условного топлива близок к расходу при автономной работе этого блока.



Рис. 9.13. Вариант компоновки главного корпуса парогазовой установки ПГУ-800:

1-газовая турбина ГТЭ-150-1100; 2 - электрический генератор ГТУ; 3-забор воздуха в компрессор ГТУ; 4 – утилизационный паровой котел; 5 -паровая турбина К-500-166; 6- дымосос; 7 - дутьевой вентилятор; 8 -газоход

Рис. 9.14. Принципиальная тепловая схема полузави­симой парогазовой установки:

ГВЭ - газоводяной экономайзер; ПК - паровой котел; осталь­ные обозначения см. на рис. 9.8.

Полузависимые ПГУ целесообразно устанавливать в европейской части СССР. По данным ЛМЗ рекомендуются следующие со­четания паровых и газовых турбин: 1 X К-300-240+1 Х ГТЭ-150-1100; 1 Х К-500-130+ 1 Х ГТЭ-150-1100; 1 X К-1200-240 + 2 X ГТЭ-150-1100 и др. Увеличение расчетных капитальных вложений в газотурбинную ус­тановку составит около 20%, а экономия ус­ловного топлива в энергосистеме при эксплуа­тации ПГУ в пиковом режиме- (0,5-1,0) X Х10 6 кг/год. Для получения пиковой мощности перспективно использование в схе­ме полузависимых ПГУ также теплофикаци­онных установок.

Рассмотренные схемы ПГУ предполагают частичное или полное использование высоко­качественного органического топлива (при­родного газа или жидкого газотурбинного топлива), что тормозит их широкое внедре­ние. Значительный интерес представляют раз­работанные ЦКТИ различные схемы парога­зовых установок с высоконапорными пароге­нераторами и внутрицикловой газификацией твердого топлива (рис. 20.15), позволяющие перевести парогазовые установки целиком на уголь.


Рис. 9.15. Принципиальная тепловая схема ПГУ с ВПГ и внутрицикловой газификацией угля:

/- сушка топлива; 2 - газогенератор; 3 - высоконапорный парогенератор (ВПГ); 4 - барабан-сепаратор; 5 - дополнительная ка­мера сгорания ВПГ; 6- циркуляционный насос ВПГ; 7-экономайзер утилизации теплоты уходящих газов газовой турбины; 8-ды­мовая труба; 9- скруббер; 10- подогреватель генераторного газа; ДК -дожимающий компрессор; ПТ - паровая приводная турби­на; РГТ- расширительная газовая турбина; /- свежий пар; // - пар промперегрева; /// - сжатый воздух после компрессора; IV - очищенный генераторный газ; V - зола; VI-IX - питательная вода и конденсат турбины

Предварительно измельченный уголь (дробленка угля 3-10 мм) подается для под­сушки в сушилку и через окислитель (для предотвращения шлакования) в газогенера­тор. Один из вариантов схемы - газификация угля в газогенераторе с «кипящим» слоем на паровоздушном дутье. Газификация топлива обеспечивается подачей в газогенератор воз­духа после дожимающего компрессора и пара из «холодной» нитки промежуточного пере­грева. Воздух для газификации в количестве примерно 3,2 кг на 1 кг кузнецкого угля по­следовательно сжимается в основном и дожи­мающем компрессорах (давление повышается на 10%) и после смешения с паром поступает в газогенератор. Газификация угля происхо­дит при температуре, близкой к 1000 °С.

Генераторный газ охлаждается, отдавая свою теплоту рабочему телу паротурбинной части, затем очищается от механических при­месей и серосодержащих соединений и после расширения в расширительной газовой тур­бине (для уменьшения потребления пара при- водной турбиной дожимающего компрессора) поступает в высоконапорный парогенератор и его дополнительную камеру сгорания для сжигания. Остальная часть тепловой схемы совпадает со схемой обычной ПГУ с ВПГ.

ВНИПИэнергопромом совместно с НПО ЦКТИ разработан проект теплофикационного парогазового энергоблока мощностью 225 МВт с внутрицикловой газификацией угля. Для этой цели использовано типовое энергетиче­ское оборудование: двухкорпусный высокона­порный парогенератор ВПГ-650-140 ТКЗ, га­зотурбинный агрегат ГТЭ-45-2 ХТЗ, теплофи­кационная паровая турбина Т-180-130 ЛМЗ, а также два газогенератора с паровоздушным дутьем ГГПВ-100-2 производительностью по 100 т/ч кузнецкого угля. Технико-экономиче­ские расчеты показали, что по сравнению с обычным паротурбинным теплофикационным блоком 180 МВт применение парогазового энергоблока позволяет увеличить удельную выработку электроэнергии на тепловом по­треблении в 1,5 раза, обеспечить экономию топлива до 8%, значительно снизить вредные выбросы в атмосферу, получить суммарный годовой экономический эффект в 2,6-10 6 руб. Рассмотренный парогазовый энергоблок будет использован при создании более мощ­ных ПГУ-1000 на углях Кузнецкого, Экибастузского и Канско-Ачинского бассейнов.

Парогазовые установки получили доста­точно широкое применение в США, ФРГ, Япо­нии, Франции и др. В ПГУ в основном сжи­гается природный газ и жидкое топливо раз­личных видов. Внедрению ПГУ способствова­ло появление мощных ГТУ (70-100 МВт) с начальной температурой газов 900-1100°С. Это позволило применить ПГУ с утилизаци­онными паровыми котлами (рис. 9.16) бара­банного типа с принудительной циркуляцией среды и давлением пара 4-9 МПа в зависи­мости от того, производится в них дополни­тельное сжигание топлива или нет. На рис. 9.17 дана схема утилизационного паро­вого котла для ПГУ с газовой турбиной МW701. Котел выполнен для двух давлений пара. Он имеет поверхности нагрева из оребренных труб низкого и высокого давления со своими барабанами в блоке с деаэратором питательной воды.

В зависимости от чего выбираются парогазовые циклы , какой выбор будет оптимальным, и как будет выглядеть технологическая схема ПГУ?

Как только становятся известны паритет капитала и конфигу­рация в отношении расположения валов, можно приступить к пред­варительному выбору цикла.

Диапазон простирается от очень про­стых “циклов одного давления” до чрезвычайно сложных “циклов тройного давления с промежуточным перегревом”. Коэффициент полезного действия цикла с увеличением комплексности повы­шается, однако капитальные затраты также возрастают. Ключом выбора правильного цикла является определение такого цикла давления, который лучше всего подходит для заданного коэф­фициента полезного действия и заданных показателей затрат.

Парогазовая установка с циклом одного давления

Этот цикл часто используется для более благоприятного в цене топ­лива ухудшенного качества, как например, сырая нефть и тяже­лое нефтяное топливо с высоким содержанием серы.

По сравнению со сложными циклами инвестиции в ПГУ про­стых циклов незначительны.

На схеме изображена ПГУ с дополнительным змеевиком-испарителем на холодном конце кот­ла-утилизатора. Этот испаритель отбирает у отработавших газов дополнительное тепло и отдает пар деаэратору с целью использо­вания его для подогрева питательной воды.

Благодаря этому отпа­дает необходимость в отборе пара для деаэратора из паровой тур­бины. Результатом по сравнению с простейшей схемой одного давления является улучшение коэффициента полезного действия, однако соответственно повышаются капитальные вложения.

ПГУ с циклом двух давлений

Большинство находящихся в эксплуатации комбинирован­ных установок имеют циклы двойного давления. Вода подается двумя отдельными питательными насосами в экономайзер двой­ного давления.

Читайте также: Планы внедрения парогазовых электростанций в России

Вода низкого давления поступает затем в первый змеевик испарителя, а вода высокого давления нагревается в эко­номайзере, прежде чем она испарится и перегреется в горячей части котла-утилизатора. Отбор из барабана низкого давления снабжает паром деаэратор и паровую турбину.

Коэффициент полезного действия цикла двойного давления, как показано на Т-S-диаграмме на рисунке, выше, чем КПД цикла одного давления, из-за более полного использования энер­гии отработавших газов газовой турбины (дополнительная пло­щадь СС"Д"Д).

Однако при этом увеличиваются капитальные вложения на дополнительное оборудование, например, на питательные на­сосы, экономайзеры двойного давления, испарители, низкона­порные трубопроводы и два паропровода НД к паровой турбине. Поэтому рассматриваемый цикл применяют только при высо­ком паритете капитала.

ПГУ с циклом тройного давления

Это одна из наиболее сложных схем, которые находят применение в настоящее время. Она применяется в случаях очень высокого паритета капитала, при этом высокий коэффициент полезно­го действия может быть получен только с высокими затратами.

К котлу-утилизатору добавляется третья ступень, которая до­полнительно использует теплоту отработавших газов. Насос высокого давления подает питательную воду в трехступенча­тый экономайзер высокого давления и далее в барабан - се­паратор высокого давления. Питательный насос среднего дав­ления подает воду в барабан - сепаратор среднего давления.

Часть питательной воды от насоса среднего давления через дрос­сельное устройство поступает в барабан - сепаратор низкого давления. Пар из барабана высокого давления поступает в паро­перегреватель и затем в часть высокого давления паровой турби­ны. Отработавший в части высокого давления (ЧВД) пар сме­шивается с паром, поступившим из барабана среднего давления, перегревается и поступает на вход части низкого давления (ЧНД) паровой турбины.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

Коэффициент полезного действия может быть дополнитель­но повышен за счет подогрева топлива водой высо­кого давления перед его поступлением в газовую турбину.

Диаграмма выбора цикла

Типы циклов, начиная с цикла одного давления и кончая цик­лом тройного давления с промежуточным перегревом, представле­ны как функции паритета напитала.

Цикл выбирается путем опре­деления, какие из циклов соответствуют данному показателю паритета капитала для конкретного случая применения. Если, на­пример, паритет капитала составляет 1800 дол. США/кВт, то выбирается цикл двойного или тройного давления.

В первом при­ближении решение принимается в пользу цикла тройного давле­ния, так как при неизменном паритете капитала коэффициент полезного действия и мощность выше. Однако при более точном рассмотрении параметров может оказаться, что для удовлетво­рения других требований более целесообразным является выбор цикла двойного давления.

Существуют случаи, для которых диаграмма выбора цикла неприменима. Наиболее часто встречающимся примером подоб­ного случая является ситуация, когда заказчик хочет иметь в рас­поряжении электрическую мощность как можно скорее и оптимизация для него менее важна, чем короткие сроки поставки.

В зависимости от обстоятельств может оказаться целесообразным циклу с несколькими давлениями предпочесть цикл с одним давлением, так как затраты времени меньше. Для этой цели можно разработать серию стандартизированных циклов с заданными па­раметрами, которые с успехом находят применение в подобных случаях.

(Visited 2 507 times, 1 visits today)

Как устроена ТЭЦ? Агрегаты ТЭЦ. Оборудование ТЭЦ. Принципы работы ТЭЦ. ПГУ-450.

Здравствуйте , дорогие дамы и уважаемые господа!

Когда я учился в Московском Энергетическом Институте, мне не хватало практики. В институте имеешь дело в основном с "бумажками", а мне уже скорей хотелось видеть "железки". Часто было трудно понять, как устроен тот или иной агрегат, никогда ранее его не видя. Предлагаемые студентам эскизы не всегда позволяют понять полную картину, и мало кто себе мог представить истинную конструкцию, например, паровой турбины, рассматривая только картинки в книжке.

Данная страница призвана заполнить существующий пробел и предоставить всем интересующимся пусть не слишком подробную, но зато наглядную информацию о том как "изнутри" устроено оборудование Тепло-Электро Централи (ТЭЦ). В статье рассмотрен достаточно новый для России тип энергоблока ПГУ-450, использующий в своей работе смешанный цикл - парогазовый (большинство ТЭЦ используют пока только паровой цикл).

Преимущество данной страницы в том, что фотографии, представленные на ней, выполнены в момент строительства энергоблока, что позволило отснять устройство некоторого технологического оборудования в разобранном виде. На мой взгляд, данная страница окажется наиболее полезна для студентов энергетических специальностей - для понимания сути изучаемых вопросов, а также для преподавателей - для использования отдельных фотографий в качестве методического материала.

Источником энергии для работы данного энергоблока является природный газ. При сгорании газа выделяется тепловая энергия, которая затем используется для работы всего оборудования энергоблока.

Всего в схеме энергоблока работают три энергетические машины: две газовые турбины и одна паровая. Каждая из трех машин рассчитана на номинальную электрическую вырабатываемую мощность 150МВт.

Газовые турбины по принципу действия схожи с двигателями реактивных самолетов.

Для работы газовых турбин необходимы два компонента: газ и воздух. Воздух, с улицы, поступает через воздухозаборники. Воздухозаборники закрыты решетками, чтобы защитить газотурбинную установку от попадания птиц и всякого мусора. В них же смонтирована антиоблединительная система, предотвращающая намерзание льда в зимний период времени.

Воздух поступает на вход компрессора газотурбинной установки (осевого типа). После этого, в сжатом виде, он попадает в камеры сгорания, куда кроме воздуха подводится природный газ. Всего на каждой газотурбинной установке установлено по две камеры сгорания. Они расположены по бокам. На первой фотографии ниже воздуховод еще не смонтирован, а левая камера сгорания закрыта целлофановой пленкой, на второй - вокруг камер сгорания уже смонтирован помост, установлен электрогенератор:

На каждой камере сгорания установлено по 8 газовых горелок:

В камерах сгорания происходит процесс горения газовоздушной смеси и выделение тепловой энергии. Вот как выглядят камеры сгорания "изнутри" - как раз там, где непрерывно горит пламя. Стенки камер выложены огнеупорной футеровкой:

В нижней части камеры сгорания расположено маленькое смотровое окошечко, позволяющее наблюдать происходящие в камере сгорания процессы. Видеоролик ниже демонстрирует процесс горения газовоздушной смеси в камере сгорания газотурбинной установки в момент ее запуска и при работе на 30% номинальной мощности:

Воздушный компрессор и газовая турбина находятся на одном и том же валу, и часть крутящего момента турбины используется для привода компрессора.

Турбина производит больше работы, чем требуется для привода компрессора, и избыток этой работы используется для привода "полезной нагрузки". В качестве такой нагрузки используется электрогенератор электрической мощностью 150МВт - именно в нем вырабатывается электроэнергия. На фотографии ниже "серый сарай" - это как раз и есть электрогенератор. Электрогенератор также находится на одном валу с компрессором и турбиной. Все вместе вращается с частотой 3000 об/мин.

При прохождения газовой турбины продукты сгорания отдают ей часть своей тепловой энергии, однако далеко не вся энергия продуктов сгорания используется для вращения газовой турбины. Значительная часть этой энергии не может быть использована газовой турбиной, поэтому продукты сгорания на выходе газовой турбины (выхлопные газы) несут с собой еще очень много тепла (температура газов на выходе газовой турбины составляет порядка 500 ° С). В самолетных двигателях это тепло расточительно выбрасывается в окружающую среду, но на рассматриваемом энергоблоке оно используется далее - в паросиловом цикле. Для этого, выхлопные газы с выхода газовой турбины "вдуваются" снизу в т. н. "котлы-утилизаторы" - по одному на каждую газовую турбину. Две газовых турбины - два котла-утилизатора.

Каждый такой котел представляет собой сооружение высотой в несколько этажей.

В этих котлах тепловая энергия выхлопных газов газовой турбины используется для нагревания воды и превращения ее в пар. В последствии этот пар используется при работе в паровой турбине, но об этом чуть позже.

Для нагревания и испарения вода проходит внутри трубок диаметром примерно 30мм, расположенных горизонтально, а выхлопные газы от газовой турбины "омывают" эти трубки снаружи. Так происходит передача тепла от газов к воде (пару):

Отдав большую часть тепловой энергии пару и воде, выхлопные газы оказываются вверху котла-утилизатора и выводятся с помощью дымохода через крышу цеха:

С внешней стороны здания дымоходы от двух котлов-утилизаторов сходятся в одну вертикальную дымовую трубу:

Следующие фотографии позволяют оценить размеры дымоходов. На первой фотографии представлен один из "уголков", которыми дымоходы котлов-утилизаторов подсоединяются к вертикальному стволу дымовой трубы, на остальных фотографиях - процесс монтажа дымовой трубы.

Но вернемся к конструкции котлов-утилизаторов. Трубки, по которым проходит вода внутри котлов, разделены на множество секций - трубных пучков, которые образуют несколько участков:

1. Экономайзерный участок (который на данном энергоблоке имеет особое название - Газовый Подогреватель Конденсата - ГПК);

2. Испарительный участок;

3. Пароперегревательный участок.

Экономайзерный участок служит для подогрева воды от температуры порядка 40 ° С до температуры, близкой к температуре кипения. После этого вода поступает в деаэратор - стальную емкость, где параметры воды поддерживаются такими, что из нее начинают интенсивно выделятся растворенные в ней газы. Газы собираются вверху емкости и удаляются в атмосферу. Удаление газов, особенно кислорода, необходимо для предотвращения быстрой коррозии технологического оборудования, с которым контактирует наша вода.

Пройдя деаэратор, вода приобретает название "питательная вода" и поступает на вход питательных насосов. Вот как выглядели питательные насосы, когда их только что привезли на станцию (всего их 3шт.):

Питательные насосы имеют электропривод (асинхронные двигатели питаются от напряжения 6кВ и имеют мощность 1.3МВт). Между самим насосом и электромотором находится гидромуфта - агрегат , позволяющий плавно изменять частоту вращения вала насоса в широких пределах.

Принцип действия гидромуфты схож с принципом действия гидромуфты в автоматических коробках передач автомобилей.

Внутри находятся два колеса с лопатками, одно "сидит" на валу электромотора, второе - на валу насоса. Пространство между колесами может быть заполнено маслом на разный уровень. Первое колесо, вращаемое двигателем, создает поток масла, "ударяющийся" в лопатки второго колеса, и вовлекающий его во вращение. Чем больше масла будет залито между колесами, тем лучшее "сцепление" будут иметь валы между собой, и тем большая механическая мощность будет передана через гидромуфту к питательному насосу.

Уровень масла между колесами изменяется с помощью т. н. "черпаковой трубы", откачивающей масло из пространства между колес. Регулирование положения черпаковой трубы осуществляется с помощью специального исполнительного механизма.

Сам по себе питательный насос центробежный, многоступенчатый. Заметьте, этот насос развивает полное давление пара паровой турбины и даже превышает его (на величину гидравлических сопротивлений оставшейся части котла-утилизатора, гидравлических сопротивлений трубопроводов и арматуры).

Конструкцию рабочих колес нового питательного насоса увидеть не удалось (т. к. он уже был собран), но на территории станции удалось обнаружить части старого питательного насоса схожей конструкции. Насос состоит из чередующихся вращающихся центробежных колес и неподвижных направляющих дисков.

Неподвижный направляющий диск:

Рабочие колеса:

С выхода питательных насосов питательная вода подается в т. н. "барабаны-сепараторы" - горизонтальные стальные емкости, предназначенные для разделения воды и пара:

На каждом котле-утилизаторе установлены по два барабана-сепаратора (всего 4 на энергоблоке). В совокупности с трубками испарительных секций внутри котлов-утилизаторов, они образуют контуры циркуляции пароводяной смеси. Работает это следующим образом.

Вода с температурой, близкой к температуре кипения, поступает внутрь трубок испарительных секций, протекая по которым догревается до температуры кипения и затем частично превращается в пар. На выходе испарительного участка мы имеем пароводяную смесь, которая поступает в барабаны-сепараторы. Внутри барабанов-сепараторов смонтированы специальные устройства

Которые помогают отделить пар от воды. Пар затем подается на пароперегревательный участок, где его температура еще более увеличивается, а отделенная в барабане-сепараторе (отсепарированная) вода смешивается с питательной водой и снова поступает в испарительный участок котла-утилизатора.

После пароперегревательного участка пар из одного котла-утилизатора смешивается с таким же паром второго котла-утилизатора и поступает на турбину. Его температура столь высока, что трубопроводы, по которым он проходит, если снять с них теплоизоляцию, - светятся в темноте темно-красным свечением. И теперь этот пар подается на паровую турбину, чтобы отдать в ней часть своей тепловой энергии и совершить полезную работу.

Паровая турбина имеет 2 цилиндра - цилиндр высокого давления и цилиндр низкого давления. Цилиндр низкого давления - двухпоточный. В нем пар разделяется на 2 потока, работающих параллельно. В цилиндрах находятся роторы турбины. Каждый ротор, в свою очередь, состоит из ступеней - дисков с лопатками. "Ударяясь" в лопатки, пар заставляет роторы вращаться. Фотография ниже отражает общую конструкцию паровой турбины: ближе к нам - ротор высокого давления, дальше от нас - двухпоточный ротор низкого давления

Вот так выглядел ротор низкого давления, когда его только распаковали из заводской упаковки. Заметьте, он имеет только 4 ступени (а не 8):

А вот ротор высокого давления при ближайшем рассмотрении. Он имеет 20 ступеней. Обратите также внимание на массивный стальной корпус турбины, состоящий из двух половинок - нижней и верхней (на фото только нижняя), и шпильки, с помощью которых эти половинки соединяется друг с другом. Чтобы при пуске корпус быстрее, но, в то же время, более равномерно прогревался, используется система парового обогрева "фланцев и шпилек" - видите специальный канал вокруг шпилек? Именно через него проходит специальный поток пара для прогрева корпуса турбины при ее пуске.

Чтобы пар "ударялся" в лопатки роторов и заставлял их вращаться, этот пар сначала нужно направить и ускорить в нужном направлении. Для этого используются т. н. сопловые решетки - неподвижные секции с неподвижными лопатками, размещенные между вращающимися дисками роторов. Сопловые решетки НЕ вращаются - они НЕподвижны, и служат только для направления и ускорения пара в нужном направлении. На фотографии ниже пар проходит "из за этих лопаток на нас" и "раскручивается" вокруг оси турбины против часовой стрелки. Далее, "ударяясь" во вращающиеся лопатки дисков ротора, которые находятся сразу за сопловой решеткой, пар передает свое "вращение" ротору турбины.

На фотографии ниже можно видеть части сопловых решеток, подготовленные для монтажа

А на этих фотографиях - нижнюю часть корпуса турбины с уже установленными в нее половинками сопловых решеток:

После этого в корпус "вкладывается" ротор, монтируются верхние половинки сопловых решеток, затем верхняя часть корпуса, далее различные трубопроводы, теплоизоляция и кожух:

Пройдя через турбину, пар поступает в конденсаторы. У данной турбины два конденсатора - по числу потоков в цилиндре низкого давления. Посмотрите на фотографию ниже. На ней хорошо видна нижняя часть корпуса паровой турбины. Обратите внимание на прямоугольные части корпуса цилиндра низкого давления, закрытые сверху деревянными щитами. Это - выхлопы паровой турбины и входы в конденсаторы.

Когда корпус паровой турбины оказывается полностью собран, на выходах цилиндра низкого давления образуется пространство, давление в котором при работе паровой турбины примерно в 20 раз ниже атмосферного, поэтому корпус цилиндра низкого давления проектируется не на сопротивление давлению изнутри, а на сопротивление давлению снаружи - т. е. атмосферному давлению воздуха. Сами конденсаторы находятся под цилиндром низкого давления. На фото ниже - это прямоугольные емкости с двумя люками на каждой.

Конденсатор устроен схоже с котлом-утилизатором. Внутри него находится множество трубок диаметром примерно 30мм. Если мы откроем один из двух люков каждого конденсатора и заглянем внутрь, мы увидим "трубные доски":

Сквозь эти трубки протекает охлаждающая вода, которая называется технической водой. Пар с выхлопа паровой турбины оказывается в пространстве между трубками снаружи них (за трубной доской на фото выше), и, отдавая остаточное тепло технической воде через стенки трубок, конденсируется на их поверхности. Конденсат пара стекает вниз, накапливается в конденсатосборниках (в нижней части кондесаторов), после чего попадает на вход конденсатных насосов. Каждый конденсатный насос (а всего их 5) приводится во вращение трехфазным асинхронным электродвигателем, рассчитанным на напряжение 6кВ.

С выхода конденсатных насосов вода (конденсат) снова поступает на вход экономайзерных участков котлов-утилизаторов и, тем самым, паросиловой цикл замыкается. Вся система является почти герметичной и вода, являющаяся рабочим телом, многократно превращается в пар в котлах-утилизаторах, в виде пара совершает работу в турбине, чтобы снова превратиться в воду в конденсаторах турбины и т. д.

Эта вода (в виде воды или пара) постоянно контактирует с внутренними деталям технологического оборудования, и чтобы не вызывать их быструю коррозию и износ - специальным образом химически подготавливается.

Но вернемся к конденсаторам паровой турбины.

Техническая вода, нагретая в трубках конденсаторов паровой турбины, по подземным трубопроводам технического водоснабжения выводится из цеха и подается в градирни - чтобы в них отдать тепло, отнятое у пара из турбины, окружающей атмосфере. На фотографиях ниже приведена конструкция градирни, возведенной для нашего энергоблока. Принцип ее работы основан на разбрызгивании внутри градирни теплой технической воды с помощью душирующих устройств (от слова "душ"). Капли воды падают вниз и отдают свое тепло воздуху, находящемуся внутри градирни. Нагретый воздух поднимается вверх, а на его место снизу градирни приходит холодный воздух с улицы.

Вот как выглядит градирня у своего основания. Именно через "щель" снизу градирни приходит холодный воздух для охлаждения технической воды

Снизу градирни находится водосборный бассейн, куда падают и где собираются капли технической воды, выпущенные из душирующих устройств и отдавшие свое тепло воздуху. Над бассейном расположена система раздающих труб, по которым теплая техническая вода подводится к душирующим устройствам

Пространство над и под душирующими устройствами заполняется специальной набивкой из пластмассовых жалюзи. Нижние жалюзи предназначены для более равномерного распределения "дождя" по площади градирни, а верхние жалюзи - для улавливания мелких капелек воды и предотвращения излишнего уноса технической воды вместе с воздухом через верх градирни. Однако, на момент отснятия представленных фотографий, пластмассовые жалюзи еще не были установлены.

Бо "льшая же по высоте часть градирни ничем не заполнена и предназначена только для создания тяги (нагретый воздух поднимается вверх). Если мы встанем над раздающими трубопроводами, мы увидим, что выше ничего нет и остальная часть градирни - пустая

Следующий видеоролик передает впечатления от нахождения внутри градирни

На тот момент, когда были отсняты фотографии этой странички, градирня, построенная для нового энергоблока - еще не функционировала. Однако, на территории данной ТЭЦ были другие градирни, которые работали, что позволило запечатлеть похожую градирню в работе. Стальные жалюзи внизу градирни предназначены для регулирования потока холодного воздуха и предотвращения переохлаждения технической воды в зимний период времени

Охлажденная и собранная в бассейне градирни техническая вода снова подается на вход трубок конденсатора паровой турбины, чтобы отнять у пара новую порцию тепла и т. д. Кроме того, техническая вода используется для охлаждения прочего технологического оборудования, например, электрогенераторов.

Следующий видеоролик показывает, как в градирне охлаждается техническая вода.

Поскольку техническая вода непосредственно контактирует с окружающим воздухом, в нее попадает пыль, песок, трава и прочая грязь. Поэтому на входе этой воды в цех, на входном трубопроводе технической воды, установлен самоочищающийся фильтр. Этот фильтр состоит из нескольких секций, укрепленных на вращающемся колесе. Через одну из секций, время от времени, организуется обратный поток воды для ее промывки. Затем колесо с секциями поворачивается, и начинается промывка следующей секции и т. д.

Вот так выглядит этот самоочищающийся фильтр изнутри трубопровода технической воды:

А так снаружи (приводной электромотор еще не смонтирован):

Здесь следует сделать отступление и сказать, что монтаж всего технологического оборудования в турбинном цехе осуществляется с помощью двух мостовых кранов. Каждый кран имеет по три отдельных лебедки, предназначенных для работы с грузами разных масс.

Теперь я бы хотел немного рассказать об электрической части данного энергоблока.

Электроэнергия вырабатывается с помощью трех электрогенераторов, приводимых во вращение двумя газовыми и одной паровой турбиной. Часть оборудования для монтажа энергоблока была привезена автотранспортом, а часть железнодорожным. Прямо в турбинный цех проложена железная дорога, по которой при строительстве энергоблока подвозили крупногабаритное оборудование.

На фотографии ниже запечатлен процесс доставки статора одного из электрогенераторов. Напомню, что каждый электрогенератор имеет номинальную электрическую мощность 150МВт. Заметьте, что железнодорожная платформа, на которой привезли статор электрогенератора, имеет 16 осей (32 колеса).

Железная дорога имеет в месте въезда в цех небольшое закругление, и учитывая, что колеса каждой колесной пары жестко закреплены на своих осях, при движении на закругленном участке железной дороги одно из колес каждой колесной пары вынуждено проскальзывать (т. к. на закруглении рельсы имеют разную длину). Приведенный ниже видеоролик показывает, как это происходило при движении платформы со статором электрогенератора. Обратите внимание на то, как подпрыгивает песок на шпалах в моменты проскальзывания колес по рельсам.

Ввиду большой массы, монтаж статоров электрогенераторов осуществлялся с применением обоих мостовых кранов:

На фотографии ниже приведен внутренний вид статора одного из электрогенераторов:

А вот так осуществлялся монтаж роторов электрогенераторов:

Выходное напряжение генераторов составляет порядка 20кВ. Выходной ток - тысячи ампер. Эта электроэнергия выводится из турбинного цеха и поступает на повышающие трансформаторы, находящиеся снаружи здания. Для передачи электроэнергии от электрогенераторов к повышающим трансформаторам используются вот такие электропроводы (ток течет по центральной алюминиевой трубе):

Для измерения тока в этих "проводах" используются вот такие трансформаторы тока (на третьей фотографии выше такой же трансформатор тока стоит вертикально):

На фотографии ниже представлен один из повышающих трансформаторов. Выходное напряжение - 220кВ. С их выходов электроэнергия подается в электросеть.

Кроме электрической энергии, ТЭЦ вырабатывает также тепловую энергию, используемую для отопления и горячего водоснабжения близлежащих районов. Для этого, в паровой турбине выполнены отборы пара, т. е. часть пара выводится из турбины не дойдя до конденсатора. Этот, еще достаточно горячий пар, поступает в сетевые подогреватели. Сетевой подогреватель - это теплообменник. По конструкции он очень похож на конденсатор паровой турбины. Отличие состоит в том, что в трубках течет не техническая вода, а сетевая вода. Сетевых подогревателей на энергоблоке два. Давайте снова рассмотрим фотографию с конденсаторами провой турбины. Прямоугольные емкости - конденсаторы, а "круглые" - этот как раз и есть сетевые подогреватели. Напоминаю, что все это расположено под паровой турбиной.

Подогретая в трубках сетевых подогревателей сетевая вода подается по подземным трубопроводам сетевой воды в тепловую сеть. Обогрев здания районов, расположенных вокруг ТЭЦ, и отдав им свое тепло, сетевая вода снова возвращается на станцию, чтобы снова быть подогретой в сетевых подогревателях и т. д.

Работа всего энергоблока контролируется АСУ ТП "Овация" американской корпорации "Эмерсон"

А вот как выглядит кабельный полуэтаж, находящийся под помещением АСУ ТП. По этим кабелям в АСУ ТП поступают сигналы от множества датчиков, а также уходят сигналы на исполнительные механизмы.

Спасибо за то, что посетили эту страницу !

Парогазовыми называются энергетические установки (ПГУ) , в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения , в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель , состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции . Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения . Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов q Г , поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b ). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6 , повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens , каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8 . Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6 .

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.


ЛЕКЦИЯ 5

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми . Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235 U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым . Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области . В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR ) и два продвинутых кипящих ядерных реактора (ABWR ), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах , использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах .

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива . Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238 U (более 99%) и делящегося изотопа 235 U (примерно 0,71%) , который и представляет собой ядерное горючее (1 кг 235 U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана . Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO 2 или окиси-закиси урана U 2 O 2 ) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235 U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов .

После постепенного расщепления 235 U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора , некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233 U ) ;
  • изотоп плутония 239 ( 239 Pu );
  • изотоп тория 232 ( 232 Th ) (посредством преобразования в 233 U ).
© autonomichouse.ru, 2024
Автономный дом