За материал пэ. Полиэтилен: основные свойства и области применения

14.09.2023

Основные физико-химические свойства

Полиэтилен (ПЭ) [–CH2–CH2–]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи с СП обычно 5000 и более; в другой – разветвления из 4–6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150° С) и давлениях (до 20 атм).

Молекула полиэтилена представляет из себя не что иное, как длинную цепь из атомов углерода, к каждому из которых присоединено по два атома водорода. В зависимости от метода изготовления получаются макромалекулы с различной степенью разветвления и различной плотностью. Поэтому ПЭ подразделяется на две основные группы:

1. Полиэтилен низкой плотности

Полиэтилен низкой плотности (LDPE) – ПЭ с сравнительно сильно разветвленной макромолекулой и низкой плотностью (0,916–0,935 г/см³). Процесс его изготовления протекает при очень высоком давлении от 100 до 300 мПа и температуре 100–300 °С, поэтому обозначается так же, как полиэтилен высокого давления (ПЭВД).

2. Полиэтилен высокой плотности

Полиэтилен высокой плотности (НDPE) – ПЭ с линейной макромолекулой и относительно высокой плотностью (0,960 г/см³). Это полиэтилен, называемый также полиэтиленом низкого давления (ПЭНД), его получают полимеризацией со специальными катализаторными системами.

Линейные полиэтилены образуют области кристалличности, которые сильно влияют на физические свойства образцов. Этот тип полиэтилена обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.

Таблица. Свойства полиэтилена высокой плотности

Линейное строение, о котором упоминалось ранее, характерно для ПЭ, получаемых при низком давлении, боковые цепи образуются, но они коротки и количество их невелико. Сополимеры этилена, например с бутеном-1, также получают при низком давлении для того, чтобы ввести контролируемое число ответвлений в линейную, в сущности, молекулу. Плотность сополимеров составляет 0,945-0,950 г/см3, в то время как линейных гомополимеров - 0,960 г/см3.

Пленки на основе ПЭВП более жесткие, прочные, менее воскообразные на ощупь по сравнению с пленками на основе ПЭНП. Они могут быть получены методом экструзии с раздувом или через плоскую щель (с поливом на охлаждаемый валок или водяным охлаждением). При экструзии с раздувом, однако, получают более мутную, полупрозрачную пленку.

Температура размягчения ПЭВП (121 °С) выше, чем у ПЭНП, поэтому он выдерживает стерилизацию паром. Морозостойкость примерно такая же, как у ПЭНП.

Прочность при растяжении и сжатии выше, чем у ПЭНП, а сопротивление удару и раздиру ниже. Из-за линейной структуры молекулы ПЭВП стремятся ориентироваться в направлении те чения, и сопротивление раздиру в продольном направлении пленок значительно ниже. Различия сопротивлений раздиру в продольном и поперечном направлениях могут быть увеличены при ориентации, и пленке будут присущи свойства ленточек, работающих на раздир.

Проницаемость ПЭВП ниже, чем у ПЭНП, примерно в 5-6 раз, и он является прекрасной преградой влаге.

Среди обычных пленок ПЭВП по влагопроницаемости уступает только пленкам на основе сополимеров винилхлорида и винил-иденхлорида.

По химической стойкости ПЭВП также превосходит ПЭНП, особенно по стойкости к маслам и жирам.

С увеличением плотности растворимость в органических растворителях уменьшается, как и проницаемость по отношению к растворителям.

ПЭВП подвержен растрескиванию под действием среды, как и ПЭНП, но этот эффект может быть уменьшен благодаря использованию высокомолекулярных марок ПЭ, у которых этот недостаток отсутствует.

СВОЙСТВА ПНД ТРУБНЫХ КОМПОЗИЦИЙ

  • Плотность = 0,948-0,964 кГ/см3 (по ГОСТ 15199-69).
  • Предел текучести при растяжении = не менее 21,6 МПа (по ГОСТ 11262-80).
  • Относительное удлинение при разрыве = не менее 700% (по ГОСТ 11262-80).
  • Модуль упругости при изгибе = 680-750 МПа (по ГОСТ 9550-81).
  • Температура плавления = 125-132°С (поляризационный микроскоп).
  • Температура размягчения = 120-125°С (по Вика).
  • Термический коэффициент линейного расширения = (1,7-2,0) 0,0001-41/°С (по ГОСТ 15173-70).
  • Коэффициент теплопроводности = 0,41-0,44 Вт/м °С.
  • Электрическая прочность (толщина образца 1 мм при частоте 50 Гц) = не менее 40 кВ/мм (по ГОСТ 6433.3-7).

Удельное объемное электрическое сопротивление = 1 1016-1 1017 Ом см (ГОСТ 6433.2-71).

Области применения

Существенные свойства всех типов полиэтилена (HDPE, LDPE, LLDPE):
- малая плотность (легче воды);
- очень хорошая химическая стойкость;
- очень незначительное водопоглощение;
- непроницаемость для водяного пара;
- высокая вязкость, гибкость, растяжимость и эластичность в интервале температур от –70 до +100 °С;
- хорошая прозрачность;
- легкая перерабатываемость всеми пригодными для термопластов методами;
- очень хорошая свариваемость.

Области применения полиэтилена высокой плотности , как правило, совпадают с областями, потребляющими материал малой плотности, но измененные свойства первых, несомненно, улучшают качество вырабатываемых продуктов. Так, пленка из полиэтилена высокой плотности будет прочнее и прозрачнее, формованные детали могут иметь меньшее сечение, а трубы и волокна будут обладать большей прочностью. Повышение температуры плавления новых полиэтиленов позволяет проводить стерилизацию водяным паром. Эти факторы в сочетании с возможностью регулировать свойства продуктов будут способствовать росту применения полиэтиленов, вырабатываемых на поверхностных катализаторах. Следует отметить, что в ряде случаев применение полиэтиленов высокой плотности может лимитироваться растрескиванием при длительном приложении нагрузки.

А вот относительно высокая проницаемость полиэтилена для кислорода, двуокиси углерода, ароматических веществ, а также проблемы при контакте с определенными средами (например, растворами смачивающих веществ), феномен так называемого образования трещин вследствие внутренних напряжений, в особенности у HDPE, сужают область его применения. Различные свойства HDPE по сравнению с LDPE обусловлены его высокой плотностью. При одинаковой толщине изделия из HDPE жестче и их поверхность тверже. Температура плавления на 20 °С выше, и вследствие более плотной структуры молекулы непроницаемость для водяного пара, кислорода, углекислого газа и ароматических веществ, а также химическая стойкость лучше, чем у LDPE. Высокая температура плавления дает возможность изготовления упаковок с более высокой теплостойкостью (кратковременно до 100 °С).

Удачное и редкое сочетание в полиэтилене химической стойкости, механической прочности, морозостойкости, хороших диэлектрических свойств, стойкости к радиоактивным излучениям, чрезвычайно низкие газопроницаемость и влагопоглощение, легкость и безвредность делают полиэтилен незаменимым в целом ряде областей применения.

ПЭНД перерабатывается практически всеми базовыми способами, используемыми при работе с термопластами – экструзия, выдув, литье под давлением, ротоформование.

Таблица. Области применения ПЭНД

Экструзия

Фасовочный пакет, пакет "майка", пакет с вырубной ручкой, барьерный слой многослойных упаковочных материалов (ламинаты и коэкструзионные пленки), воздушно-пузырьковая пленка, мусорные пакеты

Газоснабжение, холодное водоснабжение, защита электросетей, дренаж, внешняя канализация, внутренняя канализация, обсадные трубы для скважин

Кабельная изоляция

Изоляция кабелей высокого напряжения

Листы, мембраны, мягкие ленты

Листы: гидроизоляция, формование деталей изделий для машиностроения. Мембраны: гидроизоляционные работы. Ленты : конвейерные ленты, геоячейки

Бытовые, сельскохозяйственные, сетки для армирования дорожных покрытий, сетки для проведения строительных работ, сетки для ограждения зданий и сооружений

Выдув

Фасовочный пакет, пакет "майка", пакет с вырубной ручкой, мусорные пакеты

Флаконы для косметики, парфюмерии, бытовой химии, канистры, бочки, баки, цистерны

Литье под давлением

Товары народного потребления

Изделия для цветоводства, изделия для ванной комнаты, изделия для кухни, предметы домашнего обихода, детские товары, садово-огородный инвентарь

Двухсоставные и односоставные крышки для ПЭТ бутылок, укупорочные изделия для парфюмерии, косметики, бытовой химии, автохими

Тарные ящики

Мебельная фурнитура

Лицевая, декоративная, крепежная, опорные элементы, прочие комплектующие

Автокомплектующие

Около 400 наименований изделий для автомобиля

Другая продукция

Не будучи приоритетным видом сырья ПЭНД используется при произодстве другой литьевой продукции: мебели, тарных ведер, детских игрушек, фитингов

Ротоформование

Баки, мусорные баки, бочки,

Мобильные туалеты

Передвижные туалеты

Детские площадки

Детские игровые комплексы (горки, горки-тоннель, городки)

Дорожные огрждения

Дорожные блоки, конусы, буферы

Колодцы, септики, мусоросборы

Эстакады

Эстакады для мойки колес, установки оборотного вод

Вспенивание

Пенополиэтилен

P.S. Основные группы марок полиэтилена и сополимеров этилена, выпускаемые на сегодняшний день:

Полиэтилен
HDPE - Полиэтилен высокой плотности (полиэтилен низкого давления)
LDPE - Полиэтилен низкой плотности (полиэтилен высокого давления)
LLDPE - Линейный полиэтилен низкой плотности
mLLDPE, MPE - Металлоценовый линейный полиэтилен низкой плотности
MDPE - Полиэтилен средней плотности
HMWPE, VHMWPE - Высокомолекулярный полиэтилен
UHMWPE - Сверхвысокомолекулярный полиэтилен
EPE - Вспенивающийся полиэтилен
PEC - Хлорированный полиэтилен

Cополимеры этилена
EAA - Сополимер этилена и акриловой кислоты
EBA, E/BA, EBAC - Сополимер этилена и бутилакрилата
EEA - Сополимер этилена и этилакрилата
EMA - Сополимер этилена и метилакрилата
EMAA - Сополимер этилена и метакриловой кислоты, Сополимер этилена и метилметилакрилата
EMMA - Сополимер этилена и метил метакриловой кислоты
EVA, E/VA, E/VAC, EVAC - Сополимер этилена и винилацетата
EVOH, EVAL, E/VAL - Сополимер этилена и винилового спирта
POP, POE - Полиолефиновые пластомеры
Ethylene terpolymer - Тройные сополимеры этилена

Полиэстер – мировой лидер среди синтетических волокон. Технология его производства стала одним из больших открытий сороковых годов прошлого века. В промышленных масштабах ткань начали производить с 1947 года из кислот и спирта, угля и нефти с добавлением воды и воздуха.

Волокна полиэстера широко используются в производстве тканей для одежды: юбок, брюк, платьев, костюмов, блузок, курток, верхней одежды. Очень популярны его смеси: с хлопком, шерстью, их называют классическими. Подразумевается соотношение шерсти и полиэстера в отношении 55% к 45%. В 2013 году Германия произвела 198 000 тон волокон полиэстера, не отстают и другие страны, что делает этот вид лидером производства.

Описание

Получают полиэстер путем расплава. Сырье нагревают, получая прядильную массу, потом продавливают через тончайшие отверстия. Уже во время производства учитывается сфера применения волокна, ему придается треугольная, округлая, овальная форма для создания различных эффектов: прозрачности, блеска, тактильного комфорта. Волокно с углами образует жесткую ткань. Полые волокна используются для изготовления легких, амортизирующих тканей, обладающих изоляционными свойствами. Продукции можно придать любой цвет: спокойный нейтральный или яркий, блестящий оттенок. Волокна полируются для придания блеска, текстурируются для приобретения волнистости.

Свойства

Характеристики волокна высоко оценили производители различных изделий и потребители. Одно из его преимуществ – устойчивость против воздействия погодных факторов: интенсивного солнца, мороза, дождя. В это же время, он является тонкой и легкой тканью, которая хорошо сочетается с натуральными волокнами.

Такие изделия не требовательны к уходу, имеют высокую устойчивость к износу. На изделиях из этих волокон легко сформировать стрелки и складки путем термической обработки.

Наиболее распространенными являются две разновидности:

  • PET – очень прочный вид ткани, волокна используются в сочетании с другими видами для придания им прочности и стабильности формы; основное сырье для производства – этилен, получаемый из нефти; из мягких волокон формируется пряжа;
  • PCDT – обладает эластичностью и упругостью, волокна используются для изготовления мебельной обивки и портьер; сырье – конденсат терефталевой кислоты, из расплава формируются нити.

Представленая ткань, полностью изготовленная из полиэстера, абсолютно немнущаяся, даже после увлажнения, она очень быстро сохнет.

После экструзии волокна формируются и вытягиваются, после контакта с воздухом они затвердевают. Для большей прочности волокна сплетаются в нити, которые наматывают на бобины и отправляют на производство тканей.

Тюль, вуаль и органза – пример прозрачной ткани из 100% полиэстера. Обычное применение – изготовление эластичного кружевного белья, рубашек и блузок. Из толстых нитей изготавливают сети и веревки.

Свойства полиэстера 100%:

  • гладкая поверхность, разнообразие цветов;
  • большое разнообразие фактур – толстая и тонкая ткань, с шелковистым блеском или матовая;
  • материал очень приятен на ощупь и при одевании вещи;
  • износостойкость без потери цвета;
  • незначительный вес;
  • ткань не склонна к появлению устойчивых заломов при сминании;
  • простой уход – стирка в прохладной воде, быстрая утюжка слегка нагретым утюгом;
  • доступная цена в сравнении с натуральным шелком.
  • это шовный материал, пригодный для пошива любых вещей.

Недостатком 100% полиэстера является высокая плотность, делающая невозможным ношение изделий из него в жарком климате.

Сочетания с другими видами волокон

Существует несколько видов сочетаний:

  • С полиамидом . Такое сочетание позволяет получить очень упругие, эластичные, износостойкие ткани, не теряющие цвет в процессе эксплуатации. Из них шьют женское белье, обладающее мягкостью и благородством шелка, эластичностью и износостойкостью настоящей синтетики. Разбавленный , полиэстер теряет часть своей термостойкости, ткань слегка электризуется, не впитывает влагу.
  • Со спандексом . Позволяет получить прочный и очень эластичный материал для изготовления чулочно-носочных изделий, прочной спортивной одежды, облегающих трикотажных изделий, перчаток. Благодаря , материал становится менее плотным и более воздухопроницаемым, хорошо тянется. Сочетание не так устойчиво к выгоранию, как чистый полиэстер, белоснежные ткани могут на солнце пожелтеть.
  • С хлопком . Хлопок является классическим примером гигроскопичности, гигиеничности, натуральности и простоты. Сочетание его с полиэстером в соотношении 65% и 35%, лишает ткань присущих хлопку недостатков. Трикотажные изделия из хлопка с полиэстером не выгорают, не растягиваются, дольше носятся и используются. Постельное белье из хлопка с полиэстером имеет двукратную продолжительность эксплуатации, по сравнению с чистым хлопком, оно не мнется и сохнет очень быстро.
  • С вискозой . Благодаря наличию полиэстера, вискоза приобретает стабильность, гигроскопичность, она не растягивается, не линяет. Из нее шьют одежду для работы и отдыха. Очень популярен вариант – вискоза 30 полиэстер 70. Подробные характеристики ткани вискоза можно найти .
  • Пряжа . Упаковки вязальной пряжи могут маркироваться как “Полиэстер”, так и “Полиэфир”, “ПЭФ”. Она обладает теплопроводностью и несминаемостью шерсти. Изделия, связанные из этой пряжи, трудно отличить от шерстяных, они не подвержены порче молью, быстро сохнут, износостойкие, не растягиваются.

Полиэстер – относительно недорогая ткань, ее цена около 300 рублей за метр, в зависимости от политики магазина.

В истории науки некоторые открытия происходили случайно, а востребованные сегодня материалы часто являлись побочным продуктом какого-либо опыта. Совершенно случайно были открыты анилиновые красители для ткани, давшие впоследствии экономический и технический прорыв в легкой промышленности. Похожая история произошла и с полиэтиленом.

Открытие материала

Первый случай получения полиэтилена произошел в 1898 году. В ходе разогревания диамезотана химик немецкого происхождения Ганс фон Пехман обнаружил не дне пробирки странный осадок. Материал был достаточно плотным и напоминал воск, коллеги ученого назвали его полиметиллином. Дальше случайности у этой группы ученых дело не пошло, результат был почти забыт, интереса ни у кого не возникло. Но все же идея повисла в воздухе, требуя прагматичного подхода. Так и случилось, через тридцать с лишком лет полиэтилен был вновь открыт как случайный продукт неудачного эксперимента.

Англичане подхватывают и выигрывают

Современный материал полиэтилен появился на свет в лаборатории английской компании Imperial Chemical Industries. Э. Фоссет и Р. Джибсон проводили эксперименты с участием газов высокого и низкого давления и заметили, что один из узлов техники, в которой проводились опыты, покрылся неизвестным восковидным веществом. Заинтересовавшись побочным эффектом, они совершили несколько попыток получить вещество, но безуспешно.

Синтезировать полимер удалось М. Перрину, сотруднику той же компании, через два года. Именно он создал технологию, послужившую основой для промышленного производства полиэтилена. В дальнейшем свойства и качества материала изменялись лишь с помощью применения различных катализаторов. Массовое производство полиэтилена началось в 1938 году, а запатентован он был в 1936 году.

Сырье

Полиэтилен - это твердый полимер белого цвета. Относится к классу органических соединений. Из чего делают полиэтилен? Сырьем для его получения является газ этилен. Газ полимеризуют при высоком и низком давлении, на выходе получают гранулы сырья для дальнейшего использования. Для некоторых технологических процессов полиэтилен производится в виде порошка.

Основные виды

На сегодняшний день полимер выпускается двух основных марок ПВД и ПНП. Материал, изготовленный при среднем давлении относительного новое изобретение, но в перспективе количество выпускаемого продукта будет неизменно расти в связи с улучшающимися характеристиками и широким полем для применения.

Для коммерческого использования производят следующие виды материала (классы):

  • Низкой плотности или другое название - высокого давления (ПЭВД, ПВД).
  • Высокой плотности, или низкого давления (ПЭНП, ПНП).
  • Линейный полиэтилен, или полиэтилен среднего давления.

Также существуют другие виды полиэтилена, каждый из которых имеет свои свойства и сферу применения. В гранулированный полимер в процессе производства добавляются различные красители, позволяющие получить черный полиэтилен, красный или любого другого цвета.

ПВД

Производством полиэтилена занимается химическая промышленность. Газ этилен - основной элемент (из чего делают полиэтилен), но не единственный, требующийся для получения материала.

  • Температура нагревания составляет до 120 °С.
  • Режим давления до 4 МПа.
  • Стимулятор процесса - катализатор (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

Процесс сопровождается выпадением полиэтилена в виде хлопьев, которые потом проходят процесс отделения от раствора с последующей грануляцией.

Этот вид полиэтилена характеризуется более высокой плотностью, устойчивостью к нагреванию и разрыву. Сферой применения являются различные виды упаковочных пленок, в том числе для фасовки горячих материалов/продуктов. Из гранулированного сырья этого типа полимера изготавливают детали для крупногабаритных машин методом литья, изоляционные материалы, трубы повышенной прочности, товары народного потребления и пр.

Полиэтилен низкого давления

Производство ПНП имеет три способа. Большинство предприятий использует метод «суспензионной полимеризации». Процесс получения ПНП происходит с участием суспензии и постоянном перемешивании исходного сырья, для запуска процесса требуется катализатор.

Вторым по распространенности способом производства является полимеризация в растворе под воздействием температуры и участии катализатора. Метод не слишком эффективен, поскольку в процессе полимеризации катализатор вступает в реакцию, и конечный полимер теряет часть своих качеств.

Последним из способов производства ПНП является газофазная полимеризация, она почти ушла в прошлое, но иногда встречается на отдельных предприятиях. Процесс происходит с помощью смешивания газовых фаз сырья под воздействием диффузии. Конечный полимер получается с неоднородной структурой и плотностью, что сказывается на качестве готового продукта.

Производство происходит при следующем режиме:

  • Температура поддерживается на уровне от 120°C до 150°C.
  • Давление не должно превышать 2 МПа.
  • Катализаторы процесса полимеризации (Циглера-Натта, смесь хлорида титана с мелаллоорганическим соединением).

Материал такого способа изготовления характеризуется жесткостью, высокой плотностью, малой эластичностью. Поэтому сферой его применения является промышленность. Технический полиэтилен применяется для изготовления крупногабаритных емкостей с повышенными характеристикам прочности. Востребован в строительной сфере, химической промышленности, для производства ТНП он почти не применяется.

Свойства

Полиэтилен устойчив к воздействию воды, ко многим видам растворителей, кислотам не вступает в реакцию с солями. При горении выделяется запах парафина, наблюдается свечение голубого оттенка, огонь слабый. Разложение происходит при воздействии азотной кислоты, хлора и фтора в газообразном или жидком состоянии. При старении, которое происходит на воздухе, в материале образуются поперечные связи между цепями молекул, что делает материал хрупким, крошащимся.

Потребительские качества

Полиэтилен - уникальный материал, привычный в быту и производстве. Вряд ли рядовой потребитель, сможет определить с каким количеством предметов из него он сталкивается ежедневно. В мировом выпуске полимеров полиэтилен занимает львиную долю рынка - 31% от общего валового продукта.

В зависимости от того, из чего сделан полиэтилен и технологии производства, определяются его качества. Этот материал соединяет порой противоположные показатели: гибкость и прочность, пластичность и твердость, сильное растяжение и устойчивость к разрыву, устойчивость к агрессивным средам и биологическим агентам. В быту мы используем пакеты различной плотности, одноразовую посуду, полиэтиленовые крышки, детали бытовых приборов и многое другое.

Области применения

Применение изделий из полиэтилена не имеет ограничений, любая отрасль промышленности или человеческой деятельности сопровождается этим материалом:

  • Наибольшее распространение полимер получил в изготовлении упаковочных материалов. На эту часть применения приходится около 35% всего производимого сырья. Такое использование оправдано грязеооталкивающими свойствами, отсутствием среды для возникновения грибкового поражения и жизнедеятельности микроорганизмов. Одна из удачных находок - рукав полиэтиленовый, имеющий широкое применение. Варьируя по собственному усмотрению длину, пользователь ограничен лишь шириной упаковки.
  • Помня, из чего сделан полиэтилен, становится понятным, почему он получил распространение как один из лучших изоляционных материалов. Одним из его востребованных в этой сфере качеств стало отсутствие электропроводимости. Также незаменимы его свойства водоотталкивания, что нашло применение в производстве гидроизоляционных материалов.
  • Устойчивость к разрушительной силе воды, как растворителя, позволяет изготавливать трубы из полиэтилена для бытовых и промышленных потребителей.
  • В строительной отрасли используются шумоизолирующие качества полиэтилена, его низкая теплопроводность. Эти свойства пригодились при изготовлении на его основе материалов для утепления жилых и промышленных объектов. Полиэтилен технический используется для изоляции тепловых трасс, в машиностроении и пр.
  • Не менее устойчив материал к агрессивным средам химической промышленности, трубы из полиэтилена применяются в лабораториях и химических производствах.
  • В медицине полиэтилен полезен в виде перевязочных материалов, протезов конечностей, используют его в стоматологии и т.д.

Способы переработки

В зависимости от того каким способом было переработано гранулированное сырье, будет зависеть какой марки полиэтилен будет получен. Распространенные способы:

  • Экструзия (выдавливание). Применяется для упаковочных и других видов пленок, листового материала для строительства и отделки, изготовления кабелей, производится рукав полиэтиленовый и прочие изделия.
  • Литье, способом. В основном используется для изготовления упаковочных материалов, боксов и т.д.
  • Экструзионно-выдувной, ротационный. С помощью этого способа получают объемные емкости, крупногабаритную тару, сосуды.
  • Армирование. По определенной технологии в формируемую массу полиэтилена закладываются усиливающие элементы (металл), что позволяет получить строительный материал повышенной прочности, но с меньшей стоимостью.

Из чего делают полиэтилен, кроме основных составляющих веществ? Обязательным является катализатор процесса и добавки, меняющие свойства, качества готового материала.

Вторичная переработка

Стойкость полиэтилена - это его плюс в качестве потребительского товара и его минус, как одного из главных загрязняющих окружающую среду факторов. На сегодняшний день важным становится переработка отходов - рециклинг. Все марки полиэтилена могут быть утилизированы и повторно превращены в гранулированное сырье, из которого можно делать множество востребованных товаров народного и промышленного потребления.

Полиэтиленовые крышки, пакеты, бутылки будут разлагаться на свалке не одну сотню лет, а накопленные отходы отравляют природные жизненно важные ресурсы. Мировая практика демонстрирует рост количества перерабатывающих полиэтилен предприятий. Собирая фактически мусор, в таких компаниях проводят его санацию, дробят. Таким образом, происходит экономия ресурсов, охрана окружающей среды и производство востребованной продукции.

Подробности Создано: 02.02.2018 17:17

История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.

Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот в легкой промышленности. Аналогичная история случилась и с .

История открытия

Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство.

Особенности

Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случаях материал производится в порошковом виде.

Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.

Свойства

Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.

Производство линейного полиэтилена

Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки 120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.

Производство полиэтилена низкого давления

ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ - это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.

Производство полиэтилена высокого давления

Такая разновидность может быть получена при температурном режиме в диапазоне от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.

Если раньше при монтаже водопровода, канализации, при проведения газа всегда использовали только металлические или чугунные трубы. Альтернативы просто не было. Сегодня все чаще применяют изделия из полимеров, и, в частности, — полиэтиленовые трубы. Они все больше вытесняют с рынка металлические аналоги, а все благодаря невысокой цене, простоте в обращении, длительному сроку эксплуатации. Полярности ПЭ трубам добавляет простота монтажа — есть фитинги, которые устанавливаются руками. Это очень удобно, например, при устройстве водопровода или системы полива на даче.

Водопровод из полиэтиленовых труб собирается легко, легко модернизируется, почти не требует обслуживания

Свойства, достоинства, недостатки

Полиэтиленовые трубы применяют для транспортировки различных жидких и газообразных веществ. В литературе можно встретить сокращенное обозначение: в русском варианте это ПЭ, в международном — PE или PE-X для сшитого полиэтилена.

Они имеет отличные свойства:


Отличный набор свойств привел к тому, что полиэтиленовые трубы становятся все более популярными. Но, чтобы не было неожиданностей, необходимо знать их недостатки. Их не очень много, но они довольно серьезные.

  • Полиэтилен горит, и при горении выделяет вредные вещества.
  • Слабая стойкость к ультрафиолету. Под воздействием солнца материал становится хрупким и ломким. Но этой болезни не подвержены трубы из сшитого полиэтилена, именно они стали в последнее время лидерами продаж.
  • Большое температурное расширение — оно в 10 раз больше чем у стали. Для нейтрализации этого недостатка устанавливается компенсатор.
  • При замерзании жидкости в трубопроводе, полиэтилен может порваться. Потому при использовании полиэтиленовых труб для организации водоснабжения частного дома или дачи, его укладывают ниже глубины промерзания или утепляют сверху, применяют дополнительные методы обогрева (греющие кабели).

Это все недостатки. Теперь о разновидностях. По способу производства есть три вида труб из полиэтилена:


В данных названиях кроется определенный парадокс. Когда говорят о высоком или низком давлении полиэтиленовых труб, имеют в виду способ их производства. Но часто это воспринимается как область использования. Реально же все наоборот. Трубы, произведенные при высоком давлении, получаются менее прочными. Их можно использовать только для безнапорных систем (без насосов). Для систем напорного водоснабжения их делают, но прочность добирают за счет толщины стенок. При обычной толщине стенок их область использования — канализация, дренажные системы, ливневки и т.п. Тут их качества оптимальны.

В напорных трубопроводах, там где высокое давление, используются как раз полиэтиленовые трубы низкого давления. Они более прочные но, одновременно, более хрупкие, намного хуже гнутся. Это тоже не очень хорошо. Зато они выдерживают значительные перепады давления без какого-либо вреда. И еще надо сказать, что оба этих типа полиэтиленовых труб подходят только для холодной воды — горячую они не выдерживают, могут расплавиться.

Трубы из сшитого полиэтилена PE-X применяются при устройстве водяного теплого пола

А вот третий тип — из сшитого полиэтилена — это вариант с высокой прочностью, гибкостью. Выдерживают такие изделия высокое давление (до 20 Атм) и температуры до +95°C, то есть PE-X трубы можно применять и для горячего водоснабжения, а также для систем отопления. Кстати, их этого типа полимера делают металлопластиковые трубы. Однако и тут есть одно «но» — этот тип материала не сваривается. При монтаже трубопровода из сшитого полиэтилена используют фитинги с прокладками. Второй тип сборки — клеевой, когда стыки соединяемых элементов промазываются клеем.

Маркировка и диаметры

Полиэтиленовые трубы обычно бывают черного или ярко-синего цвета, из сшитого полиэтилена могут иметь ярко-красный цвет. Окрашиваются так они специально — чтобы их проще было отличить от прочих полимеров. На стенке вдоль могут быть нанесены полосы синего цвета, если она предназначена для холодной воды, желтого, если применяется она для газопровода. Форма выпуска — в бухтах длиной от 20 до 50 метров (обычно малые диаметры) и кусками по 12 метров (или нужной длины по договоренности).

Пример технических характеристик PE трубы

Диаметры полиэтиленовых труб изменяются в широком диапазоне — от 20 мм до 1200 мм. Изделия малого сечения (до 40 мм) используются в основном для водопроводов и систем отопления в частных домах и квартирах, более серьезные (до 160 мм) идут на стояки систем водоснабжения, отопления и канализации. Большие диаметры — это уже промышленная и производственная сфера. Для частных строений и квартир практически не используется.

Плотность полиэтилена

Для изготовления труб используется полиэтилен разной плотности. Обозначается плотность цифрами, которые стоят после аббревиатуры:

Что еще может быть интересно: полиэтиленовые трубы могут быть еще и армированными. Вообще они производятся методом экструзии — в размягченном состоянии материал выдавливается через насадку, затем отправляется на калибровку, где ему придают требуемое сечение и размер. При производстве армированных полиэтиленовых труб волокна капрона, полистирола или поливинилхлорида (ПВХ) запаиваются внутри стенки. Оборудование для этого процесса намного более сложное, потому и цена на армированные ПЭ трубы значительно выше.

Диаметр полиэтиленовых труб и что такое SDR

В маркировке полимерных труб есть существенное отличие — указывается наружный диаметр. Но толщина стенки изменяется в больших пределах, так что внутренний диаметр приходится высчитывать — от наружного отнимать удвоенную толщину стенки. Толщина стенки в маркировке прописывается после указания наружного диаметра (обычно ставят * или знак «х»). Например: 160 х 14,6. Это обозначает что данная труба имеет наружный диаметр 160 мм, толщину стенки 14,6 мм. Можно посчитать и внутренний диаметр полиэтиленовой трубы: 160 мм — 14,6 мм*2 = 130,8 мм.

Еще в маркировке присутствует аббревиатура SDR и какие-то цифры. Цифры — это отношение наружного диаметра к толщине стенки. Этот показатель отражает прочность стенок и их возможность противостоять скачкам давления.

Что такое SDR трубы

Чем меньше показатель SDR, тем более прочной (но и более тяжелой) является труба. Правда это справедливо в пределах изделий одной плотности. Например, ПЭ 80 SDR11 — более прочная, чем ПЭ 80 SDR 17.

Наименование ПЭ трубы Характеристики Область применения
ПЭ 63 SDR 11 Низкая плотность, плохо переносят перепады температур Внутренние холодные трубопроводы
ПНД ПЭ-63 SDR 17,6 ГОСТ 18599-2001(2003), давление не выше 10 Атм Внутренние водопроводы с невысоким давлением для подвода холодной воды
ПЭ 80 SDR 13,6 Плотность выше, но перепады температур переносят плохо Водопроводы для подвода холодной воды, системы полива
ПЭ 80 SDR 17 Плотность выше, но перепады температур Водопроводы как в помещениях, так и на улице, напорные системы полива
ПЭ 100 SDR 26 Высока плотность, способность переносить перепады температур Любые трубопроводы для транспортировки жидкостей (воды, молока, соков и т.п.)
ПЭ 100 SDR 21 Увеличенная толщина стенок Любые трубопроводы, в том числе и газовые
ПЭ 100 SDR 17 Увеличенная толщина стенок, но и большая масса Чаще используются для помышленных целей
ПЭ 100 SDR 11 Полиэтилен низкого давления, высокая прочность, повышенная химическая стойкость Может использоваться при монтаже канализационных коллекторов, прокладывается в любом типе грунта

Серия трубы и номинальное давление

Следующий параметр, который может быть важен при выборе — серия. Обозначается буквой S, за которой стоят цифры. Отображает способность стенок сопротивляться давлению. Это отношение того давления, которое она может выдержать (определяется в лабораторных условиях) к рабочему. Чем больше цифра, тем прочнее труба.

Номинальное давление ПЭ труб разной плотности с разным SDR

На практике этот показатель редко принимают во внимание, так как он более «лабораторный», чем практический. Намного более важным может оказаться номинальное давление, на которое рассчитаны стенки. Эти данные представлены на фото выше. Давление находится на пересечении столбцов и строк, указано в Атмосферах. Например, для трубы PE 80 SDR 13,6 рабочее давление равно PN10 (10 Атм). Это значит, что при транспортировке сред температурой не более +20°C и давлении не более 10 Атм, срок службы данной трубы — 50 лет.

Нормативные документы

Для стандартизации выпускаемой продукции были разработаны ГОСТы и отраслевые стандарты. Нормативная база по этому виду материалов появилась не так давно — уже в нынешнем тысячелетии — после 2000 года. В маркировке обычно указывается стандарт, которому отвечает данный вид продукции. По названию ГОСТа определяется область применения (из названий ГОСТов), но непрофессионалам проще ориентироваться на наличие полос соответствующего цвета (голубые — для холодной воды, желтые — для газа).

Вот стандарты для России:


Есть стандарты для Украины:

  • ДСТУ Б В.2.7-151:2008 «Трубы полиэтиленовые для подачи холодной воды»
  • ДСТУ Б В.2.5-322007 «Трубы безнапорные из полипропилена, полиэтилена, непластифицируемого поливинилхлорида и фасонные изделия к ним для внешних сетей канализации домов и сооружений и кабельной канализации»
  • ДСТУ Б В.2.7-73-98 «Трубы полиэтиленовые для подачи горючих газов»

При желании все их можно изучить. В большинстве своем они представляют собой таблицы, в которых указан весь сортамент продукции с указанием из параметров.

Пример маркировки ПЭ трубы

Для идентификации на полиэтиленовые трубы нанесена маркировка. Надписи наносятся на каждом метре или около того. Первым указывается название фирмы-производителя, может стоять логотип кампании. Этот знак не обязательный, но является хорошим признаком — предприятие не боится за свой товар.

  • обозначение материала трубы, в данном случае — ПЭ — полиэтилен;
  • плотность полиэтилена — для этого примера 80;
  • потом SDR трубы — 11;
  • следующим стоит наружный диаметр и толщина стенки: 160 мм диаметр трубы, 14,6 мм — толщина стенки;
  • в последней позиции указывается ГОСТ или ДСТУ, которому отвечает данный тип трубы.

Приведенная на фото труба — для газопроводов это подчеркивается трижды — нанесенными желтыми полосами, надписью «газ» в маркировке и наименованием ГОСТа — 50838-2009 — это стандарт, по которому производятся пластиковые трубы для газопроводов.

© autonomichouse.ru, 2024
Автономный дом