Малый холостой ход сварочный трансформатор. Сварочный трансформатор делаем сами

18.09.2023

Сварочный трансформатор представляет собой оборудование, применяемое для дуговой ручной и прочих видов сварки. В зависимости от модели, технических характеристик существуют бытовые и промышленные разновидности. Сварочный выпрямитель или трансформатор преобразует электричество сети до требуемого значения. В состав аппарата входит несколько основных узлов. Их совместное действие образует электрическую дугу. Она плавит металл, соединяя детали сварным швом.

Конструкция

Устройство сварочного трансформатора достаточно простое. У многих мастеров получается собрать аппарат самостоятельно. Трансформатор с простейшей конструкцией для сварочного аппарата работает при подключении к однофазной сети. Он имеет три основных элемента:

  • магнитопривод (сердечник);
  • первичную стационарную обмотку;
  • вторичную движущуюся обмотку.

Магнитоприводом выступает элемент из ферромагнитной стали с замкнутым контуром. Первичная обмотка подключается к сети, а вторичная – на массу и держатель электрода. Сопротивление контура понижается, их электромагнитная связь повышается.

Более совершенные конструкции имеют в своем составе дроссель и прочие дополнительные элементы.

Принцип работы

Принцип работы сварочного трансформатора заключается в постепенном понижении напряжения до уровня 60-80В и одновременном повышении силы тока до 40-500 А. Прибор при эксплуатации чаще всего поддерживает переменный ток. Однако есть и другие разновидности, выдающие постоянный электрический поток. Их называют выпрямителями.

Работа оборудования происходит по единому принципу. При подключении напряжения по первичному контуру проходит переменный ток. Он создает магнитный поток. В обеих обмотках индуцируется электродвижущая сила. Ее можно соотнести с количеством витков обмотки.

Например, первая обмотка имеет 100 витков, а вторая – 5. Коэффициент трансформации в этом случае равен 100:5 = 20. Если это оборудование подключить к бытовой сети, на выходе получится напряжение 220:20 = 11В.

Чтобы поменять нагрузку, сварщики меняют зазор магнитопривода. При его увеличении сила тока уменьшается. И, наоборот. Чтобы подобрать необходимое значение напряжения для сварки, определяется требуемое количество витков вторичной обмотки.

Составные элементы

Устройство сварочного трансформатора позволяет понизить напряжение и увеличить силу тока для проведения процесса плавления металла. Определение этих показателей производится при создании и настройке аппарата. Для осуществления оборудованием установленных функций, сварочные трансформаторы включают в себя определенный набор комплектующих. Помимо магнитопривода и двух обмоток в состав конструкции входят:

  • винт вертикальный с лентовидным типом резьбы;
  • рукоятка для его вращения;
  • ходовая гайка винта;
  • система подвеса (защищает от повреждений);
  • зажимы для крепления и вывода проводов;
  • корпус с вентиляционной решеткой.

В некоторых сварочных трансформаторах с переменным значением тока могут применяться дополнительные элементы, облегчающие работу мастера.

Дополнительные узлы

Сварочные трехфазные и однофазные трансформаторы и выпрямители могут иметь несколько дополнительных узлов. Они позволяют усовершенствовать работу прибора. Такими узлами могут быть:

  • конденсаторы;
  • дополнительные вторичные обмотки;
  • импульсные стабилизаторы;
  • тиристорные фазорегуляторы.

Агрегат бывает с подвижным шунтом. Расстояние между обмотками меняется не за счет движения вторичной обмотки, а при помощи дополнительной детали. Шунт будет менять расстояние зазора. Также наличие особой секционной обмотки, устроенной по другому принципу, способствует регулировке напряжения.

Промышленный или бытовой сварочный трансформатор иногда нуждается в дополнительном сопротивлении. Мастеру предоставляется возможность продолжить регулировку. Дополнительные возможности появляются без процесса разведения обмоток. Мастер при помощи такого прибора сможет сварить очень тонкие или толстые листы металла.

Сопротивление может быть выполнено в виде отдельного корпуса. В нем установлен набор контакторов. Эти элементы задают требуемое значение сопротивления.

Разновидности

Устройство и принцип действия промышленного или бытового сварочного трансформатора определяют его технические характеристики. Существуют разные принципы классификации аппаратуры. По назначению выделяют однопостные и многопостные устройства. В первом случае прибор предназначен для бытового применения. Он установлен в инверторах мощностью 3-10 кВт. Бытовая сеть не рассчитана на применение аппарата мощностью более 10 кВт.

Многопостные приборы имеют сложную конструкцию. Их применяют в профессиональных, промышленных аппаратах с мощностью от 10 кВт и выше. Такой прибор может обслуживать одновременно несколько рабочих мест.

По фазному признаку различают трехфазный и однофазный сварочный трансформатор. Бывают приборы, способные переключаться на разное напряжение сети. Для бытового применения подходят однофазные агрегаты (220 В), а для промышленного требуется трехфазное оборудование (380 В). Этот признак определяет нагрузку на выходе. Трехфазным прибором можно сварить толстые детали. Однофазным моделям это не под силу.

Типы конструкции

Классификация сварочных трансформаторов происходит также по принципу устройства конструкции. Выделяют три основные группы:

  1. Аппаратура с номинальным магнитным рассеиванием. Она имеет дроссель для регулировки выходного напряжения.
  2. Оборудование с увеличенным показателем магнитного рассеивания. Имеет сложную конструкцию. Она включает в себя несколько подвижных обмоток, импульсный стабилизатор и конденсатор. Также могут присутствовать другие компоненты.
  3. Тиристорные типы сварочных трансформаторов. Они имеют соответствующее устройство фазорегулятора. Приборы тиристорного типа характеризуются относительно малым весом.

Представленную классификацию имеют аппараты переменного тока. Существуют модели постоянного тока. Они имеют большие габариты, более сложное устройство. В их составе есть выпрямитель.

Такие модели стабильнее, удобнее в работе. Назначение сварочного трансформатора, который функционирует при постоянном токе, в этом случае определяется как промышленное. Оборудование позволяет мастеру работать с цветными металлами и нержавейкой. Стоимость подобных приборов достаточно высокая. Поэтому сварочные трансформаторы этого типа применяются исключительно в профессиональных целях. Для бытовых нужд вполне подходят устройства переменного тока.

Холостой ход

Сварочные трансформаторы функционируют в режиме нагрузки и на холостом ходу. В процессе создания шва, между электродом и заготовкой замыкается вторичная обмотка. Электричество плавит металл, соединяя две части детали в единую конструкцию. Когда шов создан, вторичная цепь размыкается. Сварка окончена, агрегат переходит в режим холостого хода.

Электродвижущие силы (ЭДС) сначала образуются из-за созданного магнитного поля. Далее они поддерживаются путем рассеивания. Они ответвляются от главного потока в магнитоприводе.

ЭДС замыкаются между витками катушки в воздушном пространстве. Они и образуют показатели холостого напряжения. Он считается безопасным для жизни мастера. Холостой ход ограничивается показателем 48 В. В некоторых моделях это значение увеличено до 70 В. Если показатели холостого хода превышают установленное значение, необходимо применять автоматическое ограничение. Оно срабатывает сразу после прекращения сварки. Также корпус агрегата должен иметь заземление. Это способствует увеличению безопасности работы мастера.

На что обращать внимание при выборе?

Выбирая сварочные трансформаторы, следует обратить внимание на главные технические характеристики. К ним относят следующее:

  • Напряжение сети. Показатель должен соответствовать указанному производителем значению (220 или 380 В).
  • Диапазон регулирования. Чем шире пределы, тем больше возможностей предоставляется сварщику. Можно выбрать электроды разного диаметра. Бытовые разновидности характеризуются диапазоном регулирования от 50 до 200 А.
  • Номинальный ток. Профессиональные устройства выдают около 1000 А, а бытовые – до 100 А.
  • Рабочее напряжение. На выходе из устройства для дуговой сварки должно определяться номинальное значение 30-70В.
  • Продолжительность сварки. Показатель определяет, сколько агрегат сможет работать непрерывно. Бытовые модели выполняют непрерывную сварку около 15-20 мин., а профессиональные – несколько часов.
  • Напряжение на холостом ходу. Показатель не должен превышать границы 70 В.
  • Потребляемая мощность. Чем выше этот показатель, тем эффективнее работает оборудование. Однако надо учитывать возможности бытовой сети. Слишком большая нагрузка может быть недопустимой.

При выборе необходимо учитывать, для каких целей приобретается оборудование. В этом случае получится купить агрегат с оптимальными показателями по приемлемой цене.

Возможные неисправности

Сварочные трансформаторы могут выходить из строя по нескольким причинам. В большинстве случаев ремонт можно произвести самостоятельно. Для этого необходимо определить причину поломки.

Чаще всего аппарат для сварки выходит из строя при замыкании в цепи. Оно происходит между элементами конструкции. Замыкание вызывает отключение аппарата. Чтобы возобновить работу агрегата, необходимо его разобрать. Неисправный элемент потребуется заменить. Чаще всего причиной такой поломки становится клеммная колодка или проходящая рядом с ней обмотка.

Второй причиной выхода аппарата из строя является перегрев. Он происходит, если устанавливается значение напряжения больше, чем рекомендовано производителем. Если подобная проблема появляется часто, перемотку потребуется частично или полностью заменить. Для этого приобретается провод с таким же диаметром сечения.

Если в процессе работы появился сильный шум, гудение, потребуется разобрать корпус. Причиной является ослабление зажима гайки или болта. Все соединения потребуется подтянуть.

После проведения ремонта работу оборудования тестируют. Если все в порядке, можно приступать к сварке снова. Конструкция агрегата отличается простотой и надежностью. Поэтому поломки и сбои в его работе появляются редко.

Оборудование для сварки широко применяется как любителями, так и профессионалами. При помощи такого устройства можно соединять тонкие и толстые заготовки, листы из различных материалов посредством электрической дуги. В зависимости от назначения и условий применения аппаратуры, следует приобретать прибор с требуемыми техническими характеристиками.

Напряжение холостого хода сварочного инвертора — это напряжение между положительным и отрицательным выходными контактами устройства при отсутствии дуги. У сварочного инвертора в исправном состоянии оно должно находиться в пределах, указанных в инструкции производителя. Обычно это напряжение от 40 В до 90 В. Такой номинал обеспечивает легкое зажигание дуги при сварке металла. Это создает и безопасность работы сварщика.

Напряжение холостого хода: как возникает и на что влияет

Напряжение холостого хода получается путем преобразования напряжения питающей сети (220 В или 380 В, 50 Гц) в двух последовательных преобразователях, сначала в напряжение постоянного тока, а затем в переменное частотой 20-50 кГц. Затем высокочастотное напряжение подается на регулятор, поддерживающий необходимую величину напряжения на выходных клеммах и заданную силу тока при зажигании дуги.

Многие считают, что этот параметр влияет только на легкость зажигания дуги, чем выше напряжение, тем легче зажигается дуга. Условия работы сварщиков при монтаже конструкций далеки от идеальных. Случайное касание токоведущих частей с завышенным напряжением может привести к несчастному случаю.

У многих моделей инверторов напряжение холостого тока и сила рабочего тока находятся в прямой зависимости. При сварке металла, покрытого толстым слоем ржавчины или краски, дуга зажигается с трудом.

Если в этой ситуации увеличить напряжение холостого хода, то рабочий ток окажется избыточным, и вместо качественного соединения металла могут образоваться шлак и поры.

Вернуться к оглавлению

На чем отражается правильность подбора режима

Правильно установленный режим холостого хода обеспечивает качественное сгорание электрода и четко выраженный капельный перенос металла в сварную ванночку, образование надежного соединения с проваром корня шва. Образование брызг при поджоге и разрыве дуги минимальное, поверхность свариваемых деталей в зоне шва почти не требует дополнительной очистки. Одним из основных признаков правильно подобранного режима является характерный шипящий звук при горении дуги.

Трехфазный сварочный выпрямитель с регулировкой напряжения холостого хода секционированием витков обмоток трансформатора.

В некоторых моделях сварочного инвертора реализована дополнительная защитная функция от поражения сварщика электрическим током при повышенном напряжении холостого хода. Аппарат автоматически снижает напряжение до безопасной величины при возникновении нештатной ситуации и восстанавливает при исчезновении. Аппараты с увеличенным напряжением холостого хода используются при сварке электродами с тугоплавкой обмазкой, применяемыми для работы со специфическими сплавами.

Определенные модели инверторов для лучшего зажигания дуги оснащены схемой . Такие устройства использовались на трансформаторных сварочных аппаратах с переменным и постоянным током. Осциллятор преобразует питающее напряжение сети в напряжение 2,5-3 кВ с частотой 150-300 кГц и выдает его на выходные клеммы импульсами длительностью в несколько десятков миллисекунд. Осциллятор состоит из повышающего низкочастотного трансформатора, подключенного к колебательному контуру, и разрядника с вольфрамовыми контактами. На выходе стоят конденсаторы, пропускающие токи высокой частоты и ограничивающие ток низкой частоты от сварочного аппарата.

В таких устройствах еще предусмотрена защита от поражения электрическим током. Потребляемая мощность осцилляторов составляет 250-300 Вт, что незначительно увеличивает общую потребляемую мощность сварочного инвертора. Осцилляторы можно приобрести в виде отдельного блока или изготовить самостоятельно.

Вернуться к оглавлению

Возможные неполадки в работе и их причины

Причины возникновения неполадок в работе инвертора могут возникнуть по причине:

  • неисправности самого инвертора;
  • неудовлетворительного состояния сварочных кабелей и цепи питания устройства.

Температурная деформация и напряжение на выходе устройства находятся в неразрывной связи. Из-за скачков напряжения изменяется температура горения дуги, металл либо не прогревается до необходимой температуры, либо сгорает, образуя шлак и поры. Способы устранения неполадок зависят от обнаруженной неисправности. Самой простой причиной может быть плохой контакт в соединениях сварочных кабелей с крокодилами и штекерами для подключения к инвертору. Он ведет к появлению деформаций при сварке. Обычно такой дефект проявляется в резких непериодических скачках сварочного тока, самопроизвольном затухании дуги, что может привести к некачественному соединению, деформации и напряжению при сварке деталей от неравномерного нагрева.

Способ устранения прост и может быть выполнен самостоятельно. Для устранения необходимо снять защитные изоляционные ручки, отсоединить кабель и осмотреть места соединения. При наличии окислов и следов нагрева нужно зачистить поверхности наждачной шкуркой и собрать, тщательно затянув соединительные болты. Кабели с подломленными или оборванными жилами и поврежденной изоляцией необходимо заменить на аналогичные. Длину кабеля лучше сохранить прежнюю. Многие модели инверторов рассчитаны на строго определенную нагрузку по индуктивному сопротивлению и при изменении длины кабеля могут изменить параметры работы.

Следующая причина может быть в неисправности самого устройства. Для определения работоспособности аппарата необходимо замерить прибором напряжение на выходных клеммах инвертора и напряжение в питающей сети. При нормальном сетевом напряжении низкое напряжение на выходе инвертора будет свидетельствовать о неисправности устройства. Ремонт инвертора лучше доверить специалистам из сервисного центра.

Если напряжение на выходе инвертора находится в допустимых пределах при нормальном напряжении питающей сети, следует тщательно проверить цепь подачи питающего напряжения на устройство от вводной точки электроснабжения или прибора учета. Минимальная потребляемая мощность устройств в режиме сварки находится в пределах 4-5 кВт. Необходимое сечение подводящих проводов из меди при такой мощности должно быть не менее 2,5 мм 2 с длительно допустимым рабочим током 25 А по всей цепи питания. Кабель с меньшим сечением будет быстро нагреваться, на нем будут возрастать потери напряжения.

Обязательно необходимо проверить качество всех соединений по цепи питания. Слабая скрутка или другой вид некачественного соединения тоже могут создавать проблемы при сварочных работах и привести к возгоранию. Разъемные соединения из пары вилка-розетка должны быть нового типа с увеличенным диаметром электропроводящих штифтов на вилках. Вилки старого типа не выдерживают нагрузки при длительных режимах работы. Розетки тоже должны быть соответствующего типа. Длина подводящих питание линий не может быть больше 50 м, если иное не указано в технической документации на устройство.

В сельской местности часто наблюдается нештатная работа инверторов из-за перегруженных общих линий электропроводки и заниженного напряжения сети.

Если при попытке зажечь дугу питающее напряжение падает до недопустимо низкого значения в точке ввода, это свидетельствует о недостаточной пропускной способности общей линии и ее перегрузке.

Иногда в такой ситуации могут помочь стабилизаторы напряжения. Эффективность работы стабилизаторов также зависит от нескольких причин и не всегда оправдывается. Общая потребляемая мощность комплекта из сети электроснабжения составит мощность сварочного устройства плюс потери в устройстве стабилизации. Увеличатся расходы по оплате электроэнергии, возрастет перегрузка общих линий, что еще более снизит напряжение на вводе.

Перед решением использовать такое устройство в комплекте со сварочным оборудованием желательно обратиться в электросети с письменным заявлением о некачественном электроснабжении.


С появлением электричества появилась возможность соединять металлические элементы с помощью сварки. Для этого применяются специальные сварочные трансформаторы, работающие от трёхфазного и однофазного напряжения. Однофазные модели предназначены для включения в стандартную бытовую сеть 220 Вольт. А трехфазный сварочный аппарат, чаще всего, применяется в производственных целях, он обладает большой мощностью, габаритами и продолжительной эксплуатацией без перерыва. Однако есть на рынке данной техники и универсальные устройства, которые могут работать и от 220 В, и от 380В. Разумеется, что для разных материалов существует свой индивидуальный процесс сварки, поэтому каждый сварочный агрегат оборудован системой регулировки и точной настройки.

Принцип действия сварочного трансформатора

По принципу действия он не отличается от другого обычного понижающего трансформатора, только вот токи вторичной обмотке уж очень высокие, так как он работает в режиме короткого замыкания. Если закоротить вторичную обмотку обычного трансформатора, то в таком режиме он проработает недолго, так как она быстро перегреется и выйдет из строя. Вторичная обмотка сварочного рассчитана на большие токи, поэтому и выполнена медным проводом большого сечения. Напряжение U2 (на выводах вторичной обмотки) напрямую зависит от количества витков в ней.

Конечно же, мало только уменьшить выходное напряжение, нужно ещё и изменять силу тока. Для этого трансформаторы оборудуются механизмом, раздвигающим обмотки на большее расстояние, тем самым снижая магнитный поток, который, в свою очередь, уменьшает ток во вторичной обмотке.

Устройство и классификация трансформаторов, применяемых в сварочных аппаратах

Любой трансформатор для сваривания металлических различных элементов состоит из:

  1. Магнитопровода;
  2. Изолированную первичную обмотку;
  3. Вторичная обмотка;
  4. Вентилятор, для охлаждения.

В зависимости от сварочных работ происходит и управление процессом сварки,все сварочные агрегаты делятся аппараты переменного и постоянного тока. Конечно же, сам трансформатор не может работать на постоянном токе поэтому сам процесс выпрямления осуществляется после понижения напряжения. Для этого применяются:

  • управляемые тиристоры, которые непросто дают постоянный ток для сварки элементов, но осуществляют изменение силы тока во время этого процесс;
  • неуправляемые вентили диоды, вместе с дросселем.

Назначение сварочного трансформатора

Сварочный понижающий трансформатор является ключевым элементом, создающим дугу во время сварки металлических деталей. Напряжение на выходе этого понижающего устройства, работающего в режиме короткого замыкания, допускается не более 80 Вольт. Для процесса ручной дуговой сварки обязательно нужны электроды. Бытовые трансформаторы для дома выполнены по однофазной схеме обладают небольшими токами при сваривании. Главное, в бытовых условиях также стоит следить и за наличием хорошего контакта в розетке, так как токи в первичной обмотке для квартир и домов тоже очень существенны и не каждая розетка их выдержит.

Сварочные трансформаторы переменного тока

Такая конструкция считается самой не дорогой, но в то же время обладающей неплохими характеристиками сварки чёрных металлов. Для того чтобы регулировать ток и соответственно дугу во время этого процесса сварочный агрегат оборудован раздвижной системой, увеличивающей расстояние между катушками, а также площадь сердечника. Они из-за своей ценовой категории очень распространены на производстве, особенно в цехах с устаревшим оборудованием. Обладают довольно крупными размерами и зачастую устанавливаются стационарно.

И также как регулятор тока для сварочного аппарата, применяются отдельно расположенные дросселя, который добавляет индуктивности в цепь. Самый простой способ, но самый эффективный, регулировки напряжения и силы тока во время выполнения сварочных работ - это вывод нескольких контактных точек со вторичной обмотки. Кончено же, плавности изменения силы дуги в таком аппарате не получится добиться.

Сварочные трансформаторы постоянного тока

Такие приборы более эффективны для сваривания различных материалов обладают меньшими габаритами и плавным регулированием силы тока. Любой трансформатор не может работать на постоянном токе, это факт.

На рисунке показана простейшая схема такого агрегата, которую можно сделать и своими руками. Она гарантирует стабильные выходные характеристики сварочного тока и дуги, которая является ключевым аспектом любой сварки.

Сварщики знают, что при работе от положительного зажима выделяется больше тепла, чем от отрицательного. Следовательно для разной толщины металла стоит вырабатывать свою методику.

Существуют и новые разработки в этой отрасли так называемые сварочные аппараты инверторного типа. Трансформатор здесь работает на повышенных частотах, что даёт возможность снизить и габариты устройства, его вес, и токи первичной обмотки без последствий для создания качественной дуги.

Сварочный трансформатор ВДМ

Аппараты ВДМ производственного сварочного многопостового выпрямителя, устанавливается зачастую стационарно и предназначен для сварочных постов дуговой электросварки с помощью металлического электрода. Очень часто ВДМ подключаются к трёхфазной сети 380 Вольт. Во взрывоопасной среде, насыщенной пылью разной фракции, или же содержащей едкие газовые пары, разрушающие сталь и изоляцию, эксплуатация строго запрещена. Конструктивно в ВДМ есть возможность регулировать величину тока реостатом и дросселем.

Как рассчитать сварочный трансформатор

Изготовление трансформатора для сварочных работ, который должен быть близок по своим характеристикам к промышленному образцу, нужно проводить стандартными методиками подсчёта. Данная методика подойдет больше бытовому устройству, она содержит оптимальные значения обмоток и минимальные габаритные размеры сердечника.

Существует два вида сердечника:

  1. броневой;
  2. стержневой;
  3. тороидальный (круглый).

При этом стержневые имеют немного большие показания КПД (коэффициента полезного действия) нежели броневые.

Прежде чем приступить непосредственно к расчету сварочного понижающего трансформатора, необходимо определить его мощность, которая зависит от того какая величина тока нужна для его эксплуатации. Наиболее распространенные варианты от 70 до 150 А. Разумно будет брать максимально допустимые токи вторичной обмотки немного выше порядка 180–200 А.

Мощность сварочного трансформатора переменного тока, и аппарата в целом, будет равна:

P = U2 × I2 × cos (φ) / η

где, U2 — напряжение холостого хода сварочного трансформатора рекомендуется от 30 до 60 Вольт, I2 - ток сварки, cos (φ) угол сдвига фаз между током и напряжением. В случае расчета потребляемой мощности cos (φ) можно взять равным 0,8; η- КПД, для данного устройства примерно можно принять равным 0,7.

А также стоит учесть при этом и продолжительность эксплуатации трансформатора, так как, скорее всего, ему пройдется работать не один час.

Плотность тока в обмотках берётся из справочника для медного провода J = 2,5 А/мм2. Для сварочного аппарата постоянного тока ВДМ агрегат оборудуется тремя первичными и тремя вторичными обмотками, поэтому расчёт производится инженерами и без квалификации его проблематично соорудить.

Улучшение сварочного трансформатора

Для улучшения нужно сократить слишком большую вторичную обмотку в 3–4 раза, уменьшив в ней напряжение холостого хода до 22–25 вольт, а вот для стабильного и уверенного зажигания дуги, прибавить небольшую слаботочную обмотку с напряжением 80–110 вольт. Переменный ток каждой из обмоток проходит выпрямление на диодных мостах, после чего обмотки подключаются параллельно друг другу.

Но также для усовершенствования и улучшения длительной работы сварочного трансформатора особенно в летнюю жаркую погоду необходимо использовать приточную или же вытяжную вентиляцию.

Расчет самодельных сварочных трансформаторов имеет выраженную специфику, так как в большинстве случаев они не соответствуют типовым схемам и для них, по большому счету, нельзя применить стандартные методики расчета, разработанные для промышленных трансформаторов. Специфика состоит в том, что при изготовлении самоделок параметры их компонентов подстраиваются под уже имеющиеся в наличии материалы - в основном под магнитопровод. Часто трансформаторы собираются не из самого лучшего трансформаторного железа, мотаются не самым подходящим проводом, усиленно греются и вибрируют.

При изготовлении трансформатора, близкого по конструкции промышленным образцам, можно пользоваться стандартными методиками расчета. Такие методики устанавливают наиболее оптимальные значения обмоточных и геометрических параметров трансформатора. Однако, с другой стороны, эта же оптимальность является недостатком стандартных методик. Так как они оказываются совершенно бессильными при выходе какого-либо параметра за рамки стандартных значений.

По форме сердечника различают трансформаторы броневого и стержневого типов.

Трансформаторы стержневого типа, по сравнению с трансформаторами броневого типа, имеют более высокий КПД и допускают большие плотности токов в обмотках. Поэтому сварочные трансформаторы обычно, за редким исключением, бывают стержневого тика.

По характеру устройства обмоток различают трансформаторы с цилиндрическими и дисковыми обмотками.


Типы обмоток трансформаторов: а - цилиндрическая обмотка, б - дисковая обмотка. 1 - первичная обмотка, 2 - вторичная обмотка.

В трансформаторах с цилиндрическими обмотками одна обмотка намотана поверх другой. Так как обмотки находятся на минимальном расстоянии друг от друга, то практически весь магнитный поток первичной обмоткой сцепляется с витками вторичной обмотки. Только некоторая часть магнитного потока первичной обмотки, называемым потоком рассеяния, протекает в зазоре между обмотками и поэтому не связана со вторичной обмоткой. Такой трансформатор имеет жёсткую характеристику (про вольт-амперную характеристику сварочного аппарата читайте ). Трансформатор с такой характеристикой не годится для ручной сварки. Для получения падающей внешней характеристики сварочного аппарата, в этом случае, используют или балластный реостат или дроссель. Наличие этих элементов усложняет устройство сварочного аппарата.

В трансформаторах с дисковыми обмотками первичная и вторичная обмотки отдалены друг от друга. Поэтому значительная часть магнитного потока первичной обмотки не связана со вторичной обмоткой. Ещё говорят, что эти трансформаторы имеют развитое электромагнитное рассеяние. Такой трансформатор имеет, необходимую, падающую внешнюю характеристику. Индуктивность рассеяния трансформатора зависит от взаимного расположения обмоток, от их конфигурации, от материала магнитопровода и даже от близко расположенных к трансформатору металлических предметов. Поэтому точный расчёт индуктивности рассеяния практически невозможен. Обычно, на практике, расчёт ведётся методом последовательных приближений с последующим уточнением обмоточных и конструктивных данных на практическом образце.

Регулировка сварочного тока, обычно, достигается изменением расстояния между обмотками, которые выполняются подвижными. В бытовых условиях трудно выполнить трансформатор с подвижными обмотками. Выход может быть в изготовлении трансформатора на несколько фиксированных значений сварочного тока (на несколько значений напряжения холостого хода). Более тонкая регулировка сварочного тока, в сторону уменьшения, может осуществляется укладыванием сварочного кабеля в кольца (кабель будет сильно нагреваться).

Особенно сильным рассеиванием и, следовательно, крутопадающей характеристикой отличаются трансформаторы П-образной конфигурации у которых обмотки разнесены на разные плечи, так как расстояние между обмотками у них особенно велико.

Но они теряют много мощности и могут не дать ожидаемый ток.

Отношения числа витков первичной обмотки N 1 к числу витков вторичной обмотки N 2 называется коэффициентом трансформации трансформатора n, и если не учитывать различные потери, то справедливо выражение:

n = N 1 /N 2 = U 1 /U 2 = I 2 /I 1

где U 1 , U 2 - напряжение первичной и вторичной обмоток, В; I 1 , I 2 - ток первичной и вторичной обмоток, А.

Выбор мощности сварочного трансформатора

Прежде чем приступить к расчету сварочного трансформатора, необходимо четко определиться - на какой величине сварочного тока его предстоит эксплуатировать. Для электросварки в бытовых целях чаще всего используются покрытые электроды диаметром 2, 3 и 4 мм. Из них наибольшее распространение получили, наверное, трехмиллиметровые электроды, как наиболее универсальное решение, подходящие для сваривания как относительно тонкой стали, так и для металла значительной толщины. Для сварки двухмиллиметровыми электродами выбирается ток порядка 70А; "тройка" чаще всего работает на токе 110-120А; для "четверки" потребуется ток 140-150А.

Приступая к сборке трансформатора, разумным будет установить для себя предел выходного тока, и мотать обмотки под выбранную мощность. Хотя здесь можно ориентироваться и на максимально возможную мощность для конкретного образца, учитывая, что от однофазной сети любой трансформатор вряд ли способен развить ток выше 200А. При этом необходимо четко осознавать, что с увеличением мощности растет степень нагрева и износа трансформатора, необходимы более толстые и дорогие провода, увеличивается вес, да и не каждая электросеть может выдержать аппетиты мощных сварочных аппаратов. Золотой серединой здесь может быть мощность трансформатора, достаточная для работы наиболее ходовым трехмиллиметровым электродом, с выходным током 120-130А.

Потребляемая мощность сварочного трансформатора, и аппарата в целом, будет равна:

P = U х.х. × I св. × cos(φ) / η

где U х.х. - напряжение холостого хода, I св. - ток сварки, φ - угол сдвига фаз между током и напряжением. Так как сам трансформатор является индуктивной нагрузкой, то угол сдвига фаз всегда существует. В случае расчета потребляемой мощности cos(φ) можно принять равным 0,8. η - КПД. Для сварочного трансформатора КПД можно принять равным 0,7.

Стандартная методика расчета трансформатора

Эта методика применима для расчета распространенных сварочных трансформаторов с увеличенным магнитным рассеянием, следующего устройства. Трансформатор изготовлен на основе П-образного магнитопровода. Его первичная и вторичная обмотки состоят из двух равных частей, которые расположены на противоположных плечах магнитопровода. Между собой половины обмоток соединены последовательно.

Для примера возьмемся рассчитать с помощью этой методики данные для сварочного трансформатора рассчитанного на рабочий ток вторичной катушки I 2 =160А, с выходным напряжением холостого хода U 2 =50В, сетевым напряжением U 1 =220В, значение ПР (продолжительность работы) примем, скажем, 20% (про ПР см. ниже).

Введем параметр мощности, учитывающий продолжительность работы трансформатора:

P дл = U 2 × I 2 × (ПР/100) 1/2 × 0.001
P дл = 50 × 160 (20/100) 1/2 × 0.001 = 3,58 кВт

где ПР - коэффициент продолжительности работы, %. Коэффициент продолжительности работы показывает, сколько времени (в процентах) трансформатор работает в дуговом режиме (нагревается), остальное время он находится в режиме холостого хода (остывает). Для самодельных трансформаторов ПР можно считать равным 20-30%. Сам ПР в общем-то не влияет на выходной ток трансформатора, впрочем, как и соотношения витков трансформатора не слишком-то сказываются на параметре ПР у готового изделия. ПР в большей степени зависит от других факторов: сечения провода и плотности тока, изоляции и способа укладки провода, вентиляции. Однако с точки зрения приведенной методики считается, что для различных ПР более оптимальными будут несколько отличные соотношения между количеством витков катушек и площадью сечения магнитопровода, хотя, в любом случае, выходная мощность остается неизменной, рассчитанная на заданный ток I 2 . Ничто не мешает принять ПР, скажем, 60% или все 100%, а эксплуатировать трансформатор на меньшем значении, как на практике обычно и происходит. Хотя, лучшее сочетание обмоточных данных и геометрии трансформатора обеспечивает выбор значения ПР пониже.

Для выбора числа витков обмоток трансформатора рекомендуется пользоваться эмпирической зависимостью электродвижущей силы одного витка E (в вольтах на виток):

E = 0,55 + 0,095 × P дл (P дл в кВт)
Е = 0,55 + 0,095 × 3,58 = 0,89 В/виток

Эта зависимость справедлива для широкого диапазона мощностей, однако наибольшую сходимость результатов дает в диапазоне 5-30 кВт.

Количество витков (сумма обеих половин) первичной и вторичной обмоток определяются соответственно:

N 1 = U 1 /E; N 2 = U 2 /E
N 1 = 220/0,89 = 247; N 2 = 50/0,89 = 56

Номинальный ток первичной обмотки в амперах:

I 1 = I 2 × k m /n

где k m =1.05-1.1 - коэффициент, учитывающий намагничивающий ток трансформатора; n = N 1 /N 2 - коэффициент трансформации.

n = 247/56 = 4,4
I 1 = 160 × 1,1/4,4 = 40 А

Сечение стали сердечника трансформатора (см 2) определяется по формуле:

S = U 2 × 10000/(4.44 × f × N 2 × B m)
S = 50 × 10000/(4.44 × 50 × 56 × 1,5) = 27 см 2

где f=50 Гц - промышленная частота тока; B m - индукция магнитного поля в сердечнике, Тл. Для трансформаторной стали индукция может быть принята B m =1.5-1.7 Тл, рекомендуется принимать ближе к меньшему значению.

Конструктивные размеры трансформатора приведены применительно к стержневой конструкции магнитопровода. Геометрические параметры магнитопровода в миллиметрах:

  • Ширина пластины стали из пакета магнитопровода
    a=(S×100/(p 1 ×k c)) 1/2 =(27×100/(2×0,95)) 1/2 =37,7 мм .
  • Толщина пакета пластин плеча магнитопровода
    b=a×p 1 =37,7×2=75,4 мм .
  • Ширина окна магнитопровода
    c=b/p 2 =75,4×1,2=90 мм .

где p 1 =1.8-2.2; p 2 =1.0-1.2. Измеряемая по линейным размерам сторон собранного трансформатора площадь сечения магнитопровода будет несколько больше рассчитанного значения, надо учитывать неизбежные зазоры между пластинами в наборе железа, и равняется:

S из = S/k c
S из = 27/0,95 = 28,4 см 2

где k c =0.95-0.97 - коэффициент заполнения стали.

Значение (a) подбирается ближайшее из сортамента трансформаторной стали, конечное значение (b) корректируется с учетом ранее выбранного (a), ориентируясь на полученные значения S и S из.

Высота магнитопровода методикой строго не устанавливается и выбирается исходя из размеров катушек с проводом, крепежных размеров, а также учитывается расстояние между катушками, которое выставляется при подстройке тока трансформатора. Размеры катушек определяются сечением провода, количеством витков и способом намотки.

Сварочный ток можно регулировать, перемещая секции первичной и вторичной обмоток относительно друг друга. Чем больше расстояние между первичной и вторичной обмотками, тем меньшим будет выходная мощность сварочного трансформатора.

Таким образом, для сварочного трансформатора со сварочным током 160А были получены значения основных параметров: суммарное количество витков первичных катушек N 1 =247 витков и измеряемая площадь сечения магнитопровода S из =28,4 см 2 . Расчет с теми же исходными данными, кроме ПР=100% даст несколько иные соотношения S из и N 1: 41,6 см 2 и 168 соответственно для того же тока 160А.

На что нужно обратить внимание, анализируя полученные результаты? Прежде всего, в этом случае соотношения между S и N для определенного тока действительны только для сварочного трансформатора, изготовленного по схеме с увеличенным магнитным рассеиванием. Если бы мы применили значения S и N, полученные для этого типа трансформатора, для другого трансформатора - построенного по схеме силового трансформатора (см. рисунок ниже), то выходной ток при тех же значениях S и N 1 значительно возрос бы, предположительно в 1,4-1,5 раза или пришлось бы примерно во столько же раз увеличить количество витков первичной катушки N 1 для сохранения заданной величины тока.

Сварочные трансформаторы, у которых секции вторичной катушки намотаны поверх первичной, получили значительное распространение при самостоятельном изготовлении сварочных аппаратов. Магнитный поток у них более сконцентрирован и энергия передается более рационально, хотя это приводит к ухудшению сварочных характеристик, которые однако, можно выправить дросселем или балластным сопротивлением.

Упрощенный расчет сварочного трансформатора

Неприемлемость во многих случаях стандартных методик расчета заключается в том, что они устанавливают для конкретной мощности трансформатора только единые значения таких основных параметров, как измеренная площадь сечения магнитопровода (S из) и количество витков первичной обмотки (N 1), хотя последние и считаются оптимальными. Выше было получено сечение магнитопровода для тока 160А, равное 28 см 2 . На самом деле сечение магнитопровода для той же мощности может варьироваться в значительных пределах - 25-60 см 2 и даже выше, без особой потери в качестве работы сварочного трансформатора. При этом под каждое произвольно взятое сечение необходимо рассчитать количество витков, прежде всего первичной обмотки, таким образом, чтобы получить на выходе заданную мощность. Зависимость между соотношением S и N 1 близка к обратно пропорциональной: чем больше площадь сечения магнитопровода (S), тем меньше понадобиться витков обеих катушек.

Самой важной частью сварочного трансформатора является магнитопровод. Во многих случаях для самоделок используются магнитопроводы от старого электрооборудования, которое до того ничего общего со сваркой не имело: всевозможные крупные трансформаторы, автотрансформаторы (ЛАТРы), электродвигатели. Часто эти магнитопроводы обладают весьма экзотической конфигурацией, а их геометрические параметры невозможно изменить. И сварочный трансформатор приходится рассчитывать под то, что есть, - нестандартный магнитопровод, используя нестандартную методику расчета.

Наиболее важными при расчете параметрами, от которых зависит мощность, являются площадь сечения магнитопровода, количество витков первичной обмотки и расположение на магнитопроводе первичной и вторичной обмоток трансформатора. Сечение магнитопровода в данном случае измеряется по наружным размерам сжатого пакета пластин, без учета потерь на зазоры между пластинами, и выражается в см 2 . При напряжении питания сети 220-240В, с незначительным сопротивлением в линии, можно рекомендовать следующие формулы приближенного расчета витков первичной обмотки, которые дают положительные результаты для токов 120-180А для многих типов сварочных трансформаторов. Ниже приведены формулы для двух крайних вариантов расположения обмоток.

Для трансформаторов с обмотками на одном плече (рисунок ниже, а):
N 1 = 7440 × U 1 /(S из × I 2)
Для трансформаторов с разнесенными обмотками (рисунок ниже, б):
N 1 = 4960 × U 1 /(S из × I 2)

где N 1 - примерное количество витков первичной обмотки, S из - измеренное сечение магнитопровода (см 2), I 2 - заданный сварочный ток вторичной обмотки (А), U 1 - сетевое напряжение.

При этом надо учитывать, что для трансформатора с разнесенными по разным плечам первичной и вторичной обмотками вряд ли удастся получить ток более 140А - сказывается сильное рассеивание магнитного поля. Нельзя также ориентироваться на ток выше 200А для остальных типов трансформаторов. Формулы носят весьма приближенный характер. Некоторые трансформаторы с особенно несовершенными магнитопроводами дают значительно более низкие показатели выходного тока. Кроме того, существует много таких параметров, которые нельзя определить и учесть в полной мере. Обычно неизвестно, из какого сорта железа изготовлен тот или иной, снятый со старого оборудования магнитопровод. Напряжение в электросети может сильно изменяться (190-250В). Еще хуже, если линия электропередачи обладает значительным собственным сопротивлением, составляя всего единицы Ома, оно практически не влияет на показания вольтметра, обладающего большим внутренним сопротивлением, но может сильно гасить мощность сварки. Учитывая все вышеизложенное, рекомендуется первичную обмотку трансформатора выполнять с несколькими отводами через 20-40 витков.

В этом случае всегда более точно можно будет подобрать мощность трансформатора или подрегулировать ее под напряжение конкретной сети. Количество витков вторичной обмотки определяется из соотношения (кроме "ушастика", например из двух ЛАТРов):

N 2 = 0,95 × N 1 × U 2 /U 1

где U 2 - желаемое напряжение холостого хода на выходе вторичной обмотки (45-60В), U 1 - напряжение сети.

Выбор сечения магнитопровода

Теперь мы знаем, как можно рассчитать витки катушек сварочного трансформатора под определенное сечение магнитопровода. Но остается вопрос - каким именно выбрать это сечение, особенно если конструкция магнитопровода позволяет варьировать его значение?

Оптимальное значение сечения магнитопрвода для типичного сварочного трансформатора было получено в примере расчета по стандартной методике (160А, 26 см 2). Однако далеко не всегда оптимальные с точки зрения энергетических показателей значения являются таковыми, а то и возможными вообще, с точки зрения конструктивных и экономических соображений.

Например, трансформатор одной и той же мощности может иметь сечения магнитопровода с разницей в два раза: скажем 30-60 см 2 . При этом количество витков обмоток будет различаться тоже примерно в два раза: для 30 см 2 придется мотать в два раза больше провода, чем для 60 см 2 . Если у магнитопровода небольшое окно, то вы рискуете тем, что все витки попросту не влезут в его объем или придется использовать очень тонкий провод - в этом случае необходимо увеличить сечение магнитопровода с целью уменьшения количества витков провода (актуально для многих самодельных трансформаторов). Вторая причина - экономическая. Если обмоточный провод в дефиците, то, учитывая его немалую стоимость, этот материал придется экономить по максимуму, если есть возможность, наращиваем магнитопровод до большего сечения. Но, с другой стороны, магнитопровод - самая тяжелая часть трансформатора. Лишняя площадь сечения магнитопровода - лишний и притом, весьма ощутимый вес. Проблема прибавки веса особенно сказывается тогда, когда трансформатор намотан алюминиевым проводом, вес которого намного меньше стали, а тем более меди. При больших запасах провода и достаточных размерах окна магнитопровода этот элемент конструкции имеет смысл выбирать потоньше. В любом случае не рекомендуется опускаться ниже значения 25 см 2 , не желательны также сечения выше 60 см 2 .

Подбор витков трансформатора опытным путем

В некоторых случаях о выходной мощности трансформатора можно судить по току первичной обмотки в режиме холостого хода. Вернее, здесь можно говорить не о количественной оценке мощности в режиме сварки, а о настройке трансформатора на максимальную мощность, на которую способна конкретная конструкция. Или же речь идет о контроле количества витков первичной обмотки, чтобы не допустить их недостатка в процессе изготовления. Для этого понадобится некоторое оборудование: ЛАТР (лабораторный автотрансформатор), амперметр, вольтметр.

В общем случае по току холостого тока нельзя судить о мощности: ток может быть разным даже для одинаковых типов трансформаторов. Однако, исследовав зависимость тока в первичной обмотке в режиме холостого хода, можно более уверенно судить о свойствах трансформатора. Для этого первичную обмотку трансформатора надо подключить через ЛАТР, что позволит плавно менять напряжение на ней от 0 до 240В. В цепь также должен быть включен амперметр.

Постепенно увеличивая напряжение на обмотке, можно получить зависимость тока от питающего напряжения. Она будет иметь следующий вид.

Сначала кривая тока полого, почти линейно возрастает до небольшого значения, далее скорость возрастания увеличивается - кривая загибается вверх, после чего следует стремительное увеличение тока. В случае, когда устремление кривой к бесконечности происходит до напряжения 240В (кривая 1), то это значит, что первичная обмотка содержит мало витков и ее необходимо домотать. Надо учитывать, что трансформатор, включенный на то же напряжение без ЛАТРа, будет брать ток примерно на 30% больше. Если же точка рабочего напряжения лежит на изгибе кривой, то при сварке трансформатор будет выдавать свою максимальную мощность (кривая 2). В случае кривых 3, 4 трансформатор будет иметь ресурс мощности, которую можно увеличить путем уменьшения витков первичной обмотки, и незначительный ток холостого хода: большинство самоделок ориентированы на это положение. Реально токи холостого хода различны для разных типов трансформаторов, в большинстве случаев находясь в интервале 100-500 мА. Не рекомендуется устанавливать ток холостого хода более 2А.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Занимаясь поисками подходящего сварочного трансформатора, многие отказываются от заводских моделей в пользу самодельных. Причины такого решения могут быть самые разнообразные, начиная от неприемлемых цен и заканчивая желанием сделать сварочный трансформатор самостоятельно. По сути особых сложностей в том, как сделать сварочный трансформатор, нет, к тому же, самодельный сварочный трансформатор может по праву считаться предметом гордости любого хозяина. Но при его создании невозможно обойтись без знаний об устройстве и схеме трансформатора, его характеристиках и расчетах по ним.

Любой электроинструмент обладает определенными рабочими характеристиками и сварочный трансформатор не исключение. Но кроме привычных, таких как мощность, количество фаз и требуемое для работы напряжение в сети, сварочный трансформатор имеет целый набор уникальных характеристик, каждая из которых позволит безошибочно подобрать в магазине аппарат под определенный вид работ. Для тех же, кто собирается изготовить сварочный трансформатор своими руками, знание этих характеристик потребуется для выполнения расчетов.

Но прежде чем перейти к детальному описанию каждой характеристики, необходимо разобраться, что собой представляет базовый принцип работы сварочного трансформатора. Он довольно прост и заключается в преобразовании входящего напряжения, а именно его понижении. Понижающая вольтамперная характеристика сварочного трансформатора имеет следующую зависимость - при понижении напряжения (Вольт) возрастает сила тока сварки (Ампер), что и позволяет плавить и сваривать металл. На основе этого принципа и построена вся работа сварочного трансформатора, а также связанные с ней другие рабочие характеристики.

Напряжение сети и количество фаз

С этой характеристикой все довольно просто. Она указывает на требуемое для работы сварочного трансформатора напряжение. Это может быть 220 В или 380 В. На практике напряжение в сети может немного колебаться в пределах +/- 10 В, что может сказаться на стабильной работе трансформатора. При расчетах для сварочного трансформатора напряжение в сети является основополагающей характеристикой для расчетов. К тому же, от напряжения в сети зависит количество фаз. Для 220 В - это две фазы, для 380 В - три. В расчетах это не учитывается, но для подключения сварочного аппарата и его работы это важный момент. Также есть отдельная категория трансформаторов, которые могут работать как от 220 В, так и от 380 В.

Номинальный сварочный ток трансформатора

Это основная рабочая характеристика любого сварочного трансформатора. От величины силы сварочного тока зависит возможность резки и сварки металла. Во всех сварочных трансформаторах это значение указывается максимальным, так как именно столько способен выдать трансформатор на пределе возможностей. Конечно, номинальный сварочный ток можно регулировать для возможности работы электродами различного диаметра, и для этого в трансформаторах предусмотрен специальный регулятор. Необходимо отметить, что для бытовых сварочных трансформаторов, созданных своими руками, сварочный ток не превышает 160 - 200 А. Это связано в первую очередь с весом самого трансформатора. Ведь чем больше сила сварочного тока, тем больше требуется витков медного провода, а это лишние неподъемные килограммы. В дополнение на сварочный трансформатор цена зависит от металла для проводов обмоток, и чем больше провода было потрачено, тем дороже обойдется сам аппарат.

В работе со сварочным трансформатором для сварки металла используются наплавляемые электроды различного диаметра. При этом возможность использовать электрод определенного диаметра зависит от двух факторов. Первый - номинальный сварочный ток трансформатора. Второй - толщина металла. В приведенной ниже таблице указаны диаметры электродов в зависимости от толщины металла и сварочного тока самого трансформатора.

Как видно из этой таблицы, использование 2 мм электрода будет просто бессмысленным при силе тока в 200 А. Или наоборот, 4 мм электрод бесполезен при силе тока в 100 А. Но довольно часто приходится выполнять сварку металла различной толщины одним и тем же аппаратом и для этого сварочные трансформаторы оборудуются регуляторами силы тока.

Пределы регулирования сварочного тока

Для сварки металла различной толщины используются электроды различного диаметра. Но если сила сварочного тока будет слишком большой, то металл при сварке прогорит, а если слишком маленькой, то не удастся его расплавить. Потому в сварочных трансформаторах для этих целей встраивается специальный регулятор, позволяющий понижать номинальный сварочный ток до определенного значения. Обычно в самодельных сварочных трансформаторах создается несколько ступеней регулировки, начиная от 50 А и заканчивая 200 А.

Номинальное рабочее напряжение

Как уже отмечалось, сварочный трансформатор преобразует входящее напряжение до более низкого значения, составляющего 30 - 60 В. Это и есть номинальное рабочее напряжение, которое необходимо для поддержания стабильного горения дуги. Также от этого параметра зависит возможность сварки металла определенной толщины. Так для сварки тонколистового металла требуется низкое напряжение, а для более толстого - высокое. При расчетах этот показатель весьма важен.

Номинальный режим работы

Одной из ключевых рабочих характеристик сварочного трансформатора является его номинальный режим работы. Он указывает на период беспрерывной работы. Этот показатель для заводских сварочных трансформаторов обычно составляет около 40%, а вот для самодельных он может быть не выше 20 - 30%. Это значит, что из 10 минут работы можно беспрерывно варить 3 минуты, а 7 давать отдохнуть.

Мощность потребления и выходная

Как и любой другой электроинструмент, сварочный трансформатор потребляет электроэнергию. При расчетах и создании трансформатора показатель потребляемой мощности играет важную роль. Что касается выходной мощности, то её также следует учитывать, так как коэффициент полезного действия сварочного трансформатора напрямую зависит от разницы между этими двумя показателями. И чем меньше эта разница, тем лучше.

Напряжение холостого хода

Одной из важных рабочих характеристик является напряжение холостого хода сварочного трансформатора. Эта характеристика отвечает за легкость появления сварочной дуги, и чем выше будет напряжение, тем легче появится дуга. Но есть один важный момент. Для обеспечения безопасности человека, работающего с аппаратом, напряжение ограничивается 80 В.

Схема сварочного трансформатора

Как уже отмечалось, принцип работы сварочного трансформатора заключается в понижении напряжения и повышении силы тока. В большинстве случаев устройство сварочного трансформатора довольно простое. Он состоит из металлического сердечника, двух обмоток - первичной и вторичной. На представленном ниже фото изображено устройство сварочного трансформатора.

С развитием электротехники принципиальная схема сварочного трансформатора совершенствовалась, и сегодня производятся сварочные аппараты, в схеме которых используются дроссели, диодный мост и регуляторы силы тока. На представленной схеме видно, как диодный мост интегрирован в сварочный трансформатор (фото ниже).

Одним из самых популярных самодельных сварочных трансформаторов является трансформатор с тороидальным сердечником, в силу его малого веса и прекрасных рабочих характеристик. Схема такого трансформатора представлена ниже.

Сегодня существует множество различных схем сварочных трансформаторов, начиная от классических и заканчивая схемами инверторов и выпрямителей. Но для создания сварочного трансформатора своими руками лучше выбирать более простую и надежную схему, не требующую использования дорогой электроники. Как, например, сварочный тороидальный трансформатор или трансформатор с дросселем и диодным мостом. В любом случае для создания сварочного трансформатора, кроме схемы, придется выполнить определенные расчеты, чтобы получить требуемые рабочие характеристики.

При создании сварочного трансформатора под конкретные цели приходится определять его рабочие характеристики заранее. Кроме этого, расчет сварочного трансформатора выполняется для определения количества витков первичной и вторичной обмоток, площади сечения сердечника и его окна, мощности трансформатора, напряжения дуги и прочего.

Для выполнения расчетов потребуются следующие исходные данные :

  • входящее напряжение первичной обмотки (В) U1;
  • номинальное напряжение вторичной обмотки (В) U2;
  • номинальная сила тока вторичной обмотки (А) I;
  • площадь сердечника (см2) Sс;
  • площадь окна (см2)So;
  • плотность тока в обмотке (A/мм2).

Рассмотрим на примере расчета для тороидального трансформатора со следующими параметрами: входящее напряжение U1=220 В, номинальное напряжение вторичной обмотки U2=70 В, номинальная сила тока вторичной обмотки 200 А, площадь сердечника Sс=45 см2, площадь окна So=80 см2, плотность тока в обмотке составляет 3 A/мм2.

Вначале рассчитываем мощность тороидального трансформатора по формуле:

P габаритн = 1,9*Sc*So . В результате получим 6840 Вт или упрощенно 6,8 кВт.

Важно! Данная формула применима только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 1,7. Для трансформаторов с сердечником типа П, Ш - 1,5.

Следующим шагом будет расчет количества витков для первичной и вторичной обмоток. Чтобы это сделать, вначале придется вычислить необходимое количество витков на 1 В. Для этого используем следующую формулу: K = 35/S . В результате получим 0,77 витка на 1 В потребляемого напряжения.

Важно! Как и в первой формуле, коэффициент 35 применим только для тороидальных трансформаторов. Для трансформаторов с сердечником типа ПЛ, ШЛ используется коэффициент 40. Для трансформаторов с сердечником типа П, Ш - 50.

Далее рассчитываем максимальный ток первичной обмотки по формуле: Imax = P/U . В результате получим ток для первичной обмотки 6480/220=31 А. Для вторичной обмотки силу тока берем за константу в 200 А, так как возможно придется варить электродами с диаметром от 2 до 3 мм металл различной толщины. Конечно, на практике 200 А - это предельная сила тока, но запас в пару десятков ампер позволит аппарату работать более надежно.

Теперь на основании полученных данных рассчитываем количество витков для первичной и вторичной обмоток в трансформаторе со ступенчатым регулированием в первичной обмотке. Расчет для вторичной обмотки выполняем по следующей формуле W2 =U2*K , в результате получим 54 витка. Далее переходим к расчету ступеней первичной обмотки. Для этого используем формулу W1ст = (220*W2)/Uст .

Uст - необходимое выходное напряжение вторичной обмотки.

W2 - количество витков вторичной обмотки.

W1ст - количество витков первичной обмотки определенной ступени.

Но прежде чем приступить к расчету витков ступеней первичной обмотки, необходимо определить напряжение для каждого. Сделать это можно по формуле U=P/I , где:

P - мощность (Вт).

U - напряжение (В).

I - ток (А).

Например, нам требуется сделать четыре ступени со следующими показателями номинальной силы тока на вторичной обмотке: 160 А, 130 А, 100 А и 90 А. Такой разброс понадобится для использования электродов различного диаметра и сварки металла различной толщины. В результате получим Uст = 40,5 В для первой ступени, 50 В для второй ступени, 65 В для третьей ступени и 72 В для четвертой. Подставив полученные данные в формулу W1ст = (220*W2)/Uст , рассчитываем количество витков для каждой ступени. W1ст1 = 293 витка, W1ст2 = 238 витков, W1ст3 = 182 витка, W1ст4 = 165 витков. В процессе намотки провода на каждом из этих витков делается отвод для регулятора.

Осталось рассчитать сечение провода для первичной и вторичной обмоток. Для этого используем показатель плотности тока в проводе, который равен 3 A/мм2. Формула довольно проста - необходимо максимальный ток каждой из обмоток разделить на плотность тока в проводке. В результате получим для первичной обмотки сечение провода Sперв = 10 мм2. Для вторичной обмотки сечение провода Sвтор = 66 мм2.

Создавая сварочный трансформатор своими руками, необходимо выполнить все вышеперечисленные расчеты. Это поможет правильно подобрать все необходимые детали и затем собрать из них аппарат. Для новичка выполнение расчетов может показаться весьма запутанным занятием, но если вникнуть в суть выполняемых действий, все окажется не таким уж и сложным.

© autonomichouse.ru, 2024
Автономный дом