Что такое фаза и ноль физический смысл. Что такое фаза и ноль в электричестве – просто о сложном

14.12.2023

У неопытных электриков или хозяев дома появляется вопрос: что же такое фаза и ноль? Раньше они не вникали в то, как устроена электропроводка. А теперь понадобилось отремонтировать розетку, заменить лампочку, и хочется все это сделать самому.

Электросеть разделена на два типа: постоянного и переменного тока. Электрический ток является движением электронов в каком-либо направлении. При постоянном токе электроны двигаются в одну сторону, имеют полярность. При переменном токе электроны меняют свою полярность с определенной частотой.

В первую очередь домашнему умельцу нужно соблюдать электробезопасность , а потом уже думать об устранении неисправности. Некоторые пренебрежительно относятся к опасности попасть под действие тока.

Все части под напряжением должны быть защищены изоляцией, клеммы розеток углублены в корпус таким образом, чтобы не было доступа и нельзя было случайно коснуться рукой. Даже конструкция вилки сделана так, что невозможно попасть под напряжение электрического тока, держась рукой за вилку. Мы уже привыкли к электричеству, и не замечаем опасности при проведении работ по ремонту электрических устройств. Поэтому, лучше освежить в памяти правила безопасности и быть внимательными.

Принцип действия

Сеть электрического переменного тока разделена на фазу и ноль (рабочую и пустую). Нулевая фаза предназначена для образования постоянной электросети при включении устройств, а также для создания заземления. На фазе находится рабочее напряжение.

Для работы электроустройства не важно, где находится фаза, а где ноль. При установке электрических проводов и включении ее в сеть дома нужно учитывать, где фаза и ноль. Проводка прокладывается кабелем с двумя или тремя жилами. В кабеле с двумя жилами находится фаза и ноль, а в кабеле с 3-мя жилами третий провод отводится для заземления. Перед работой нужно точно определить расположение выводов проводов.

Электрический ток заходит от подстанции с трансформатором, преобразующим высокое напряжение до 380 вольт. Низкая сторона трансформатора соединена в звезду. Три вывода соединены в нулевой точке, а оставшиеся выводятся на клеммы фаз.

Узел в нулевой точке подключается к заземляющему контуру подстанции. Ноль расщепляется на рабочий и защитный. Новые строящиеся дома оснащаются проводкой по такой схеме. На входе дома в щите располагается три фазы и два провода расщепленного ноля.

В старых зданиях остается схема проводки старого типа без расщепленного ноля, там вместо пяти проводов идут 4 жилы. Электрический ток от трансформатора проходит по воздуху или под землей к входному щиту, образует систему из трех фаз (питающая сеть 380) на 220. Производится разводка по щитам подъездов. В квартиру поступает кабель с 1-й фазой на 220 В и защитный провод.

Защитный провод не всегда есть в наличии, если старая проводка не переделана. В квартире нулем называется провод, который соединен с заземляющим контуром на подстанции, применяется для образования нагрузки фазы, которая подключена к противоположному выводу на трансформаторе. Защитный ноль из схемы удален, он служит для устранения неисправностей и аварий для отвода тока при повреждениях.

В такой цепи нагрузки распределены равномерно, так как на этажах сделана разводка и выведены щиты к линиям на 220В в распредщите подъезда. Напряжение, подходящее к дому, выполнено звездой. При выключенных в квартире всех устройств и отсутствии нагрузки в розетках, в линии питания тока не будет.

Это является простой рабочей схемой электроснабжения, которая использовалась много лет. Но в любой сети могут возникнуть неисправности, которые связаны с плохими контактами соединений, либо обрывом проводов.

Обрыв провода

Проводник может легко оторваться, или его могут забыть подключить. Это происходит довольно часто, так же, как и могут отгореть провода при некачественном контактном соединении и большой нагрузке. Если в квартире нет соединения потребителя с щитком напряжения, то устройство не будет работать. Какой именно провод разорван, не имеет значения. То же самое получается при обрыве провода одной из фаз, которая питает дом или подъезд. Квартиры, питающиеся от этой линии, не будут иметь возможность получать электричество.

В двух остальных цепях все устройства будут работать в нормальном режиме, а ток ноля будет складываться из оставшихся составляющих. Все вышеописанные обрывы проводников связаны с выключением питания от квартиры, бытовые устройства при этом не ломаются. Опасным случаем может стать момент, когда исчезнет соединение между средней точкой потребителей щита дома и контуром заземления трансформатора подстанции. Это возникает у электриков, не имеющих достаточной квалификации.

Путь прохода тока через ноль к заземлению исчезает. Ток начинает идти по наружным контурам, имеющим напряжение в 380 В. В результате получается что на нагрузках вместо 220В будет 380В. На одном щите окажется небольшое напряжение, а на втором около 380 В. Высокое значение напряжения повредит изоляцию, нарушит работу устройств, приведет к поломкам и выходу из строя приборов.

Чтобы таких ситуаций не было, применяют защитные устройства для блокировки от повышенного напряжения. Они устанавливаются в щиток квартиры, либо внутри дорогостоящих приборов.

Способы определения где фаза и ноль

Любой домашний мастер при электромонтажных работах дома или в другом месте при подключении розетки или люстры сталкивается с вопросом определения фазы и ноля на проводах. Мы расскажем, какие существуют методы и способы правильного определения фазных проводов, нулевых жил, заземляющих защитных проводов. Конечно, для имеющего опыт в таких электромонтажных работах специалиста не доставит большого труда определить фазу и нулевой провод. Но как быть людям, которые не умеют этого делать?

Разберемся, как можно в домашних условиях без специальных инструментов для измерения и электронных приборов своими силами узнать наличие на проводах где фаза и ноль, заземление.

Во время поломок в сети тока часто домашние умельцы применяют недорогую индикаторную отвертку для проверки наличия напряжения китайского изготовления.

Она действует по закону емкостного тока, проходящего по телу человека. Такая отвертка состоит из следующих деталей:

  • Наконечник металлический, заточенный под отвертку, присоединяется к фазе.
  • Резистор для ограничения тока, который уменьшает амплитуду тока до небольшой величины.
  • Лампочка неоновая, начинает светиться при прохождении тока, показывает наличие фазы на проводнике.
  • Площадка для касания пальцем человека, чтобы создавалась цепь тока по телу через землю.

Квалифицированные специалисты применяют для контроля фазы приборы с качественными деталями и имеющими несколько функций, с индикаторами под отвертку, светодиод светится с помощью транзисторной схемы, подключенной от батареек на 3 вольта.

Такие устройства кроме фазы могут решать другие вспомогательные задачи. Они не имеют клеммы для контакта пальцем. Как проверять наличие фазы в розетках индикатором, показано на рисунке.

Днем плохо видно, как светится лампочка, требуется приглядываться. Там, где лампочка светится, есть фаза. На рабочем нуле и защитном заземлении лампочка не будет гореть. Если лампа светится в других случаях, то это говорит о том, что имеются неисправности в схеме.

Во время работы с такой отверткой нужно проверить исправность ее изоляции, не касаться вывода индикатора без изоляции под напряжением. Также с помощью можно в розетке определить наличие напряжения.

Показания на тестере:

  • 220 В между фазой и нолем.
  • Нет напряжения между защитным нолем и рабочим.
  • Нет напряжения между защитным нолем и фазой.

Последний вариант – это исключение. При нормальной схеме стрелка будет показывать разность потенциалов 220 В. Но в наших розетках его нет, так как здание дома старое, электропроводка не изменялась. После реконструкции электропроводки вольтметр покажет напряжение 220 В.

Особенности нахождения неисправности

Состояние схемы электропроводки не всегда определяется путем обычной проверки напряжения. На выключателях имеется различное положение, которое иногда вводит в заблуждение электрика. На рисунке изображен случай, при выключенном выключателе на проводе фазы светильника нет напряжения при исправной проводке.

Поэтому, при измерениях в поиске поломок нужно проводить тщательный анализ возможных случаев.

Цветовка проводов

Определить, на какой жиле есть напряжение, а на какой нет, довольно просто. Существует много способов вычисления где находятся фаза и ноль.

Одним из методов является определение по цвету изоляции проводов. Каждая жила в кабеле и в электрооборудовании окрашена цветом изоляции определенной расцветки, определенной стандартом. Зная цвета распределения функциям проводов, можно легко произвести установку электропроводки.

Рабочие фазы подключают проводами с черным цветом изоляции, либо может быть коричневый или серый цвет. Нулевой провод монтируют в светло-синей изоляции. При установке вспомогательного дополнительного заземления применяют проводники с зеленым или желтым цветом изоляции.

Такой способ определения по цвету проводов, фаза и ноль, не является надежным, так как при монтаже электропроводки специалисты не всегда добросовестно соблюдают маркировку проводов по цвету жил.

Такой вопрос иногда возникает у начинающих электриков или владельцев квартир, которые хорошо владеют набором ремонтных инструментов, но раньше особо не вникали в устройство электропроводки. И вот наступил момент, когда или светиться лампочка в люстре, а звать электрика не хочется и есть огромное желание сделать все самому.

В этом случае первоочередная задача домашнего мастера заключается не в устранении возникшей неисправности, как кажется на первый взгляд, а в соблюдении правил электробезопасности, исключения возможности попасть под действие электрического тока. Почему-то об этом многие забывают, пренебрегая своим здоровьем.

Все токоведущие части проводки должны быть надежно заизолированы, а контакты розеток спрятаны вглубь корпуса так, чтобы к ним не было возможности случайного прикосновения открытыми участками тела. Даже механическая конструкция вилки, вставляемой в розетку, продумана таким образом, что держаться рукой за оба контакта и попасть под действие электрического тока довольно проблематично.

В обыденной жизни мы этого не замечаем и в сознании уже сложилась привычка не обращать внимания на электричество, которая может пагубно сказаться при проведении ремонтных работ с электроприборами. Поэтому изучите основные правила безопасности и будьте внимательны при обращении с электричеством.

Как устроена бытовая электропроводка

Электроэнергия в жилой дом приходит от трансформаторной подстанции, которая преобразует высоковольтное напряжение промышленной электросети в 380 вольт. Вторичные обмотки трансформатора соединены по схеме «звезда», когда выполнено подключение трех выводов к одной общей точке «0», а три оставшихся выведены на клеммы «А», «В», «С» (для увеличения нажмите на рисунок).

Соединенные вместе концы «0» подключены к контуру заземления подстанции. Здесь же выполнено расщепление нуля на;

    рабочий ноль, показанный на картинке синим цветом;

    защитный РЕ-проводник (желто-зеленая линия).

По этой схеме создаются все вновь строящиеся дома. Она называется . У нее на вход внутри распределительный щита дома подводятся три фазных провода и оба перечисленных нуля.

В зданиях старой постройки еще часто встречаются случаи отсутствия РЕ-проводника и четырех-, а не пятипроводная схема, которую обозначают индексом .

Фазы и ноли с выходной обмотки ТП воздушными проводами или подземными кабелями подводятся к вводному щиту многоэтажного дома, образуя трехфазную систему напряжения 380/220 вольт. Она разводится по подъездным щиткам. Внутрь жилой квартиры поступает напряжение одной фазы 220 вольт (на картинке выделены провода «А» и «О») и защитный проводник РЕ.

Последний элемент может отсутствовать, если не проведена реконструкция старой электропроводки здания.

Таким образом, «нулем» в квартире называют проводник, соединенный с контуром земли в трансформаторной подстанции и используемый для создания нагрузки от «фазы» , подключенной к противоположному потенциальному концу обмотки на ТП. Защитный ноль , называемый еще РЕ-проводником, исключен из схемы электропитания и предназначен для ликвидации последствий возможных неисправностей и аварийных ситуаций с целью отвода возникающих токов повреждений.

Нагрузки в такой схеме распределяются равномерно за счет того, что на каждом этаже и стояках выполнена разводка и подключение определенных квартирных щитков к конкретным линиям 220 вольт внутри подъездного распределительного щита.

Система подводимых напряжений к дому и подъезду представляет собой равномерную «звезду», повторяющую все векторные характеристики ТП.

Когда в квартире выключены все электроприборы, а в розетках нет потребителей и напряжение к щитку подведено, то ток в этой цепи протекать не будет.

Сумма токов трехфазной сети складывается по законам векторной графики в нулевом проводе, возвращаясь к обмоткам трансформаторной подстанции величиной I0, или как еще ее называют 3I0.

Это рабочая, оптимальная и отработанная длительными годами система электроснабжения. Но, в ней тоже, как и в любом техническом устройстве, могут возникать поломки и неисправности. Чаще всего они связаны с низким качеством контактных соединений или же полным обрывом проводников в различных местах схемы.

Чем сопровождается обрыв провода в нуле или фазе

Оторвать или просто забыть подключить проводник к какому-нибудь устройству внутри квартиры не сложно. Такие случаи происходят так же часто, как и отгорания металлических тоководов при плохом электрическом контакте и повышенных нагрузках.

Если внутри квартирной проводки пропало соединение любого электроприемника с квартирным щитком, то этот прибор не будет работать. И абсолютно не важно, что разорвано: цепь нуля или фазы.

Такая же картина проявляется в случае, когда происходит обрыв проводника любой фазы, питающей внутридомовой или подъездный электрощит. Все квартиры, подключенные к этой линии с возникшей неисправностью, перестанут получать электроэнергию.

При этом в двух других цепочках все электроприборы будут функционировать нормально, а ток рабочего нулевого проводника I0 суммируется из двух оставшихся составляющих и будет соответствовать их величине.

Как видим, все перечисленные обрывы проводов связаны с отключением электропитания с квартиры. Они не вызывают повреждения бытовых приборов. Самая же опасная ситуация возникает при исчезновении соединения между контуром заземления трансформаторной подстанции и средней точкой подключения нагрузок внутридомового или подъездного электрощита.

Такая ситуация может возникнуть по разным причинам, но чаще всего она проявляется при работе бригад электриков, владеющих смежной специальностью дегустаторов…

В этом случае пропадает путь прохождения токов по рабочему нулю к контуру заземления (А0, В0, С0). Они начинают двигаться по внешним контурам АВ, ВС, СА к которым подключено суммарное напряжение 380 вольт.

На правой части картинки показано, что ток IАВ возник при подключении линейного напряжения к последовательно соединенным нагрузкам Ra и Rв двух квартир. В этой ситуации один хозяин может экономно отключить все электроприборы, а другой — использовать их по максимуму.

В результате действия закона Ома U=I∙R на одном квартирном щитке может оказаться очень маленькая величина напряжения, а на втором — близкая к линейному значению 380 вольт. Оно вызовет повреждение изоляции, работу электрооборудования при нерасчетных токах, повышенный нагрев и поломки.

Для предотвращения подобных случаев служат защиты от повышения напряжения, которые монтируются внутри квартирного щитка или дорогостоящих электроприборов: холодильников, морозильников и подобных устройств известных мировых производителей.

Как определить ноль и фазу в домашней проводке

При возникновении неисправностей в электрической сети чаще всего домашние мастера используют дешевую отвертку-индикатор напряжения китайского производства, показанную на верхней части картинки.

Она работает по принципу прохождения емкостного тока через тело оператора. Для этого внутри диэлектрического корпуса размещены:

    оголенный наконечник в виде отвертки для присоединения к потенциалу фазы;

    токоограничивающий резистор, снижающий амплитуду проходящего тока до безопасной величины;

    неоновая лампочка, свечение которой при протекании тока свидетельствует о наличии потенциала фазы на проверяемом участке;

    контактная площадка для создания цепи тока сквозь тело человека на потенциал земли.

Квалифицированные электрики используют для проверки наличия фазы более дорогостоящие многофункциональные индикаторы в форме отверток со светодиодом, свечением которого управляет транзисторная схема, питаемая от двух встроенных батареек, создающих напряжение 3 вольта.

Способ проверки наличия и отсутствия напряжения в гнездах обыкновенной розетки простым индикатором показан на фотографиях ниже.

На левом снимке хорошо видно, что свечение индикаторной лампочки при дневном свете плохо заметно, поэтому требует повышенного внимания при работе.

Контакт, на котором индикатор засвечивается, является фазой. На рабочем и защитном нуле неоновая лампочка не должна светиться. Любое обратное действие индикатора свидетельствует о неисправностях в схеме подключения.

При эксплуатации такой отвертки необходимо обращать внимание на целостность изоляции и не прикасаться к оголенному выводу индикатора, находящемуся под напряжением.

На следующих фотографиях показан способ определения напряжения в той же розетке с помощью старого тестера, работающего в режиме вольтметра.

Стрелка прибора показывает:

    220 вольт между фазой и рабочим нулем;

    отсутствие разницы потенциалов между рабочим и защитным нулем;

    отсутствие напряжения между фазой и защитным нулем.

Последний случай является исключением. Стрелка в нормальной схеме должна тоже показывать напряжение 220 вольт. Но оно в нашей розетке отсутствует по той причине, что здание старой постройки еще не прошло этап реконструкции электропроводки, а хозяин квартиры, выполнивший последний ремонт, сделал разводку РЕ-проводника в своих помещениях, но не подключил его к заземляющим контактам розеток и шинке РЕ-проводника квартирного щитка.

Эта операция будет проводиться после перевода здания с системы TN-C на TN-C-S. Когда он завершится, стрелка вольтметра будет находиться в положении, отмеченном красной линией, показывать 220 вольт.

Несколько способов определения фазного и нулевого провода:

Особенности поиска неисправностей

Простое определение наличия или отсутствия напряжения не всегда позволяет точно определить состояние схемы. Наличие различных положений выключателей может ввести мастера в заблуждение. Например, на картинке ниже показан типичный случай, когда при отключенном выключателе на фазном проводе светильника в точке «К» не будет напряжения даже при исправной схеме.

Поэтому при проведении замеров и поисках неисправностей следует внимательно анализировать все возможные случаи.

В электроэнергетике не так-то и много разновидностей подключённых проводов. Различают провода питания и защитные провода.

В этой небольшой статье мы не будем углубляться в дебри, трёхфазные и пятифазные сети. Всё рассмотрим буквально на пальцах, на том, что нас окружает и что есть в наличии во всех магазинах и в каждом электрифицированном жилище. Проще говоря, возьмём и вскроем обычную розетку.

Начнём с времён минувших и отдадим предпочтение той электрической розетке, которая была изготовлена и установлена лет так 10, а то и 15 назад. Мы видим, что розетка подключена всего к двум проводам.

Один из этих проводов обязательно должен иметь голубоватую или синюю окраску. Именно так определяется рабочий нулевой проводник . По нему не идёт ток от источника - он направляется от Вас к источнику. Он вполне безобидный, и если схватиться за него, не прикасаясь ко второму, то ничего страшного и ужасного не случится.

А вот второй провод, окраска которого может быть любой, за исключением синей, голубой, жёлто-зелёной в полоску и чёрной, более коварный и злостный. А что вы хотите, ведь он всегда под напряжением, так как именно к нему поступают свеженькие электроны и заряженные частицы от трансформаторов и генераторов электростанций и подстанций. Называется он фазный проводник.

Дотронувшись до этого провода, вы можете получить хорошенький разряд, вплоть до смертельного исхода. И это не шутки, так как любой ток, напряжение которого свыше 50 Вольт убивает человека за несколько секунд, а у нас в бытовых розетках не менее 220 Вольт переменного тока.

Наличие напряжения на фазных проводниках можно определить специальными индикаторами . Они выполнены в виде обыкновенных отвёрток с крестовиной или лопаткой.

Рукоятка такой отвёртки состоит из полупрозрачного пластика, внутри которой встроена лампочка - диод. Верхняя часть рукоятки - металлическая.

Дотроньтесь рабочей частью индикатора до проводника, а большим пальцем руки - до металлической части на рукоятке. Если встроенный диод загорелся, значит трогать этот провод не стоит - он сейчас под напряжением.

Заметьте, что нулевой проводник никогда не вызовет горение диода, так как на нём по определению нет напряжения при условии, что он не соприкасается с проводником, по которому протекает ток.

А что же мы увидим, если вскроем розетку современного производства, приобщённую к евро стандартам. В такой розетке три провода. Два нам уже знакомы. Фазный проводник, который всегда под напряжением и может иметь любую окраску. Рабочий нулевой проводник, как правило имеет синюю или голубоватую окраску. И третий проводник, состоящий из жёлтой и зелёной окраски вдоль всего провода, который принято называть защитным нулевым проводником . Причём обычно фазный проводник расположен справа в розетках или сверху в выключателях. А нулевой защитный проводник располагается слева в розетках или снизу в выключателях.

Если по фазному проводу поступает напряжение к розетки, а по нулевому уходит от розетки к источнику, то зачем же нужен защитный?

Если подключаемое в розетку оборудование полностью исправно и проводка в надлежащем состоянии, то защитный нулевой проводник не принимает никакого участия и попросту бездействует.

Но представим, что произошло короткое замыкание, перенапряжение или замыкание на части оборудования, нормально не находящиеся под напряжением. То есть ток попал на те части, которые обычно не находятся под его действием, и поэтому изначально не соединены с проводниками Фаза и Рабочий ноль. Вы попросту ощутите удар электрического того на себе, и в худшем случае - можете погибнуть в следствии остановки сердечной мышцы.

Тут и нужен тот самый защитный нулевой проводник. Он заберёт этот ток и перенаправит его к источнику или в землю, в зависимости от того, как выполнена проводка в конкретном помещении. И даже Если Вы случайно прикоснётесь к оборудованию, не нормально находящемуся под напряжением, вы не ощутите сильного удара, ведь ток тоже не дурак - он ищет лёгкие пути, то есть выбирает ту дорогу, где наименьшее сопротивление. Сопротивление человеческого тела составляет приблизительно 1000 Ом, в то время как сопротивление защитного нулевого проводника всего около 0,1-0,2 Ом.

Пользуйтесь современными технологиями и стандартами, чтобы быть в безопасности в любой момент при любых обстоятельствах. Помните, что Ваша безопасность зависит от принимаемых Вами действий и мероприятий по её обеспечению!

Яков Кузецов

Передача электрического тока осуществляется по трехфазным сетям, при этом большинство домов имеет однофазные сети. Расщепление трехфазной цепи осуществляется с помощью вводно-распределительных устройств (ВРУ). Простым языком этот процесс можно описать следующим образом. К электрощитку дома подводится трехфазная цепь, состоящая из трех фазных, одного нулевого и одного заземляющего проводов. Посредством ВРУ цепь расщепляется – к каждому фазному проводу добавляется один нулевой и один заземляющий, получается однофазная сеть, к которой и подключаются отдельные потребители.

Что такое фаза и ноль

Попробуем разобраться, что такое ноль в электричестве и чем он отличается от фазы и земли. Фазные проводники используются для подачи электроэнергии. В трехфазной сети три токоподающих провода и один нулевой (нейтральный). Передаваемый ток сдвигается по фазе на 120 градусов, поэтому в цепи достаточно одного нуля. Фазовый проводник имеет напряжение 220 В, пара «фаза-фаза» – 380 В. Ноль не имеет напряжения.


Фазы генератора и фазы нагрузки соединяются между собой линейными проводниками. Нулевые точки генератора и нагрузки соединяются между собой рабочим нулем. По линейным проводам ток движется от генератора к нагрузке, по нулевым – в обратном направлении. Фазные и линейные напряжения равны независимо от способа подключения. Земля (заземляющий провод) также как и ноль не имеет напряжения. Он выполняет защитную функцию.

Зачем нужно зануление

Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.

В зависимости от типа линии электропередач может использоваться изолированный, глухозаземленный и эффективно-заземленный ноль. Большинство ЛЭП, питающих жилой сектор, имеет глухозаземленную нейтраль. При симметричной нагрузке на фазных проводниках рабочий ноль не имеет напряжения. Если нагрузка неравномерна, ток небаланса протекает по нулю, и схема электропитания получает возможность саморегулирования фаз.

Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN. Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N. Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.

Как различить фазу, ноль, землю

Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.

Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.

Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.

Сегодня решил попробовать разобраться с тем, что такое "фаза", "ноль" и "земля".
Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.

Тем не менее, циркуляционные насосы, мгновенные водонагреватели и накопительные водонагреватели также могут успешно работать с трехфазным током. Электричество для сети среднего напряжения трансформируется из высоковольтной и высоковольтной сетки в региональное распределение. Станция передачи снова уменьшает ее до трехфазного тока низкого напряжения 400 В и 230 В однофазного переменного тока .

В трехфазном трансформаторе каждая фаза имеет соответствующую катушку на стороне высокого и низкого напряжения. Обмотки соединены друг с другом на «внутренних» сторонах. Дизельное напряжение также преобладает между каждым внешним проводником и землей, к которой подключен защитный провод . Если металлический корпус электроприбора находится под напряжением вследствие неисправности изоляции, защитный проводник проводит его к земле. Ток короткого замыкания течет, что приводит к тому, что плавкий предохранитель отключает напряжение и, таким образом, защищает человека от «получения перца».

Если очень кратко, то фаза и ноль - для электричества, а земля - только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.

Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое "переменное" магнитное поле), то в катушке возникает "переменный" электрический ток (и, соответственно, "переменное" напряжение).
Этот величайший по своему значению эффект называется в физике "ЭлектроДвижущей Силой индукции", она же "ЭДС индукции", была открыта в середине XIX века.

Раньше его называли Нуллеитером. Он связан с отопительными и водопроводными трубами, заземляющими устройствами заземления или громоотводами. Между ними нет напряжения. Вольтметр может отображать только нулевые напряжения. Все распределительные сети для трехфазного тока имеют три внешних проводника. Однако они отличаются по отношению к условиям заземления источника тока или низковольтной распределительной сети и условиям заземления тел в электрических потребительских системах. Существует несколько способов организовать Защитник.

Это по существу приводит к появлению трех различных сетевых форм. Хотя аббревиатуры в электротехнике обычно поступают с английского языка, на этот раз он смешан на международном уровне. Заземление корпуса происходит через нейтральный проводник электрического устройства . Клиент должен заботиться о себе. Корпус нагрузки подключен к отдельному защитному проводнику. Отделяется нейтральный проводник.

"Переменное" напряжение - это когда берётся обычное "постоянное" напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.

Напряжение на катушке является "переменным" по своей природе (никто его специально не изгибает) - просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле "переменное", и поэтому получаемое на катушке напряжение тоже всегда будет "переменным").

Электрическая энергия отправляется по главной линии в соединительную коробку дома. Это разделено на несколько схем, которые соединены параллельно. Каждая схема имеет собственный предохранитель. В старых зданиях подключение к дому часто очень запутывает из-за более поздних расширений. В общем, все розетки, выключатели света и другие электрические приборы комнаты или пола объединены в цепь. И тогда у вас есть сок, где нужно принести домой - и, конечно, строительную площадку - к жизни.

Может ли кто-нибудь объяснить, как возникают термины «масса» и «фаза»? Тестер фазы загорается, когда «вы получаете протертый». Это фаза? Масса является опорной точкой, которая рассматривает как один нулевой потенциал. Все остальные точки имеют другой потенциал.

Итак, значит, где-то в дебрях электростанции вращается магнит (для примера - обычный, а в реальности - "электромагнит"), называемый "ротором", а вокруг него, на "статоре", закреплены три катушки (равномерно "размазаны" по поверхности статора).

Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в "Генераторе").

Домашняя электропроводка: находим ноль и фазу

«Земля» - это «абсолютная контрольная точка», нулевой потенциал всего мира. Масса является потенциалом 0 цепи, системы, машины, в основном - но не обязательно - идентичной «земле». Так как человек обычно почти всегда связан с землей, на которой он стоит на земле или на чем-то другом, который затем стоит или прикреплен к земле, человек подключен к потенциалу источника энергии 0. Все, что имеет потенциал 0, можно безопасно обрабатывать, так как между человеком и контуром нет напряжения.

Эта фаза является абсолютной противоположностью 0-потенциальной «земли». По отношению к «земле» есть полное напряжение. если вы касаетесь фазы, вы закрываете схему своим телом! Термин «фаза» относится к трехфазной технологии. Здесь есть три «проводника», которые различаются по разным фазам. Вот почему они называются «Фаза 1», «Фаза 2» и «Фаза 3». Если он не зависит от того, что используется, вы просто оставляете номер и говорите только о «фазе».

Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся "переменное" напряжение.

Каждая из трёх катушек соединена в свою отдельную электрическую цепь , и в каждой из этих трёх электрических цепей возникает одинаковое "переменное" напряжение, только сдвинутое ("по фазе") на треть окружности (120 градусов из полных 360-ти) друг относительно друга.

Небольшое дополнение к очень хорошему определению массы и потенциала. Проводник, который находится в напряжении при нормальной работе и способен вносить свой вклад в передачу или распределение электрической энергии , но не является нейтральным проводником или центральным проводником.

Для Земли существуют два термина «эталонная земля» и местная земля; земля. Эти «фазные тестеры», также известные как наконечник, должны использоваться только для того, как они выглядят - как отвертка. Обычно он должен загораться только на внешнем проводнике, когда там присутствует напряжение. Но иногда он может светиться нейтрально, потому что это ложь.

Такая схема называется "трёхфазным генератором" : потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
(на рисунке выше "N-S" - это обозначение магнита: "N" - северный полюс магнита, "S" - южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)

Хорошая инвестиция, когда вы живете. Ответить Оценка Спасибо за оценку. Но хотелось понять, что означают термины. Но что такое «фаза» и «масса»? И что именно измеряет фазовый тестер? И что он показывает, когда он «лжет»? Масса, как правило, является опорным потенциалом, в случае обычного переменного тока - земля, а соответствующий проводник - защитный проводник. Если какая-либо цепь имеет заземление или потенциал заземления, это означает, что никакое напряжение не может быть измерено против земли.

Напряжение в наших электрических сетях происходит от трансформатора и обычно имеет 3 фазных провода и нейтральную точку. В свою очередь, нейтральная точка подключается к земле вблизи трансформатора. Каждый из трех внешних проводников имеет напряжение 230 вольт напротив нейтральной точки, а внешние проводники имеют напряжение 400 вольт.

Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём "фазой").
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника - заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться "фазой", а вторая дырка в розетке будет называться "землёй".

Протирается один, когда один контактирует с внешним проводником и тем самым течет по всему телу против земли. Фазовый тестер является лишь частично подходящим. Он также отображает статические напряжения и предотвращает опасные напряжения при определенных условиях.

Фазовые детекторы состоят из небольшой свечи накаливания и последовательного резистора в диапазоне от 820 кОм до 1 МОм, которые установлены в корпусе с отверткой. Наконечник тестера фазы удерживается на контакте для измерения. Другой конец тестера фазы слегка касается пальцем. Если контакт гнезда является внешним проводником, загорается лампа накаливания. Проблема заключается в том, что высокое сопротивление системы может также приводить к чисто статическим напряжениям, Например, на открытой линии через параллельное наведение с внешним проводником.

Теперь, раз уж у нас три катушки, сделаем так: скажем, "левые" концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут "правые" концы катушек) по отдельности потянем к потребителю.
Получится, мы тянем к потребителю три "фазы".

В "нейтральной" точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется "нейтралью".

Некоторые лампы накаливания уже имеют напряжения зажигания от 65 В, и поэтому измерение не может рассматриваться. Другое дело, возможно, что лежачий штифт вообще не отображается. Поэтому его следует тестировать до того, как один тест всегда будет сначала на известном выходе.

Здесь цвета черные или темно-коричневые и красные, и есть только эти два. Один переносит питание на розетку и обратно. Какой из них является «лидером», пожалуйста, вышесказанное. Есть ли определенный порядок, в котором должны быть связаны три провода лампы?

Нулевой проводник обычно является «обратной связью », на которой ток. Серьезно: ответы до сих пор верны, но не полны. В случае классического обнуления в гнезде должен быть подключен мост от «нейтрального» к заземляющему соединению. Если он установлен неправильно, существует опасность для жизни из-за тока на зажимах заземления, которые легко могут быть затронуты!

Теперь возьмём и подсоединим к "нейтрали" провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод - это "земля", которой можно будет заземлить корпус подключенного электроприбора).

Получается, от генератора теперь будет идти четыре провода (плюс пятый - "земля"), а не три, как раньше.
Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
(на рисунке ниже генератор изображён слева, а трёхфазный двигатель - справа; точка G - это "нейтраль").

Для розетки и соединений ламп, которые зафиксированы в доме, синий всегда является нейтральным, а черный или коричневый - фазой. Без которого это опасно для жизни. В старых зданиях все возможно. Поэтому всегда задавайте вопросы на сайте. В противном случае палец от разъема питания. Это небольшая отвертка, в ручке которой сияет лампа накаливания, которая освещена только на «Фазе» - доступна в каждом магазине. Ответ на этот вопрос довольно прост: если вы даже не знаете более новых норм о цветах проводов, пусть пальцы его, спросите у соседа, есть ключ.

На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая "как бы нейтраль" (точка M на рисунке).
Теперь соединим четвёртый провод (идущий он "нейтрали"; точка G на рисунке) с этой второй "как бы нейтралью" (точка M на рисунке), и получим так называемый "нулевой провод" (идущий от точки G к точке M).

Электричество: что происходит именно в нейтральном проводнике?

В предыдущих ответах уже много чего. Последствия неквалифицированной электрической работы мне позволили очистить себя, и это не выглядит красиво.

Квартира или дом должны быть отремонтированы и как несколько новых разъемов? Было бы неплохо узнать, что такое электричество и что такое электричество. Но что, если окончательная безопасность отсутствует в отношении электрической установки в доме? Разумеется, известно, что есть фаза, нейтраль и земля. Но почему же протекает через нейтральный ток?



Зачем нужен этот "нулевой" провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода - провод фазы и провод земли.


Определение фазы и нуля в двухпроводной сети

Какие задачи выполняет бытовая охрана? В следующей статье рассматриваются все эти вопросы, объясняя все основные основы для электричества в домохозяйстве. Научное определение электричества выходит за рамки настоящей статьи, поэтому мы просто берем электроэнергию как таковую. Мы знаем, что электричество является поставщиком энергии и что мы каждый день полагаемся на электричество. Отсюда мы можем начать путешествие по течению в нашу семью.

Путешествие электричества в нашу семью

Электричество подается через высоковольтные кабели от электростанции к местной подстанции, а затем через четыре низковольтных кабеля в блок предохранителей собственного дома или квартиры компании. Три кабеля служат для подачи тока, которые являются так называемыми фазами. Четвертый кабель является нейтральным, который отвечает за возврат тока.


В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным - абсурд получится, будет поставлен с ног на голову весь смысл заземления.

Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и "нейтралью" (то же самое, что между фазой и "нулём").
(вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и "нейтралью" равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) - U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 ("квадратный корень из трёх") раз больше напряжения между фазой и "нейтралью".
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен "ноль" - для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт - ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый "перекос фаз", и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.

Электричество в домохозяйстве и аналогия с водным циклом

Почему электричество должно течь назад, лучше всего объясняется моделью водного цикла. Если вода течет из более высокого резерва через трубу в нижнее озеро, а посередине этого пути будет водяное рабочее колесо, оно будет вращаться. Количество воды, поступающей в резерв из резерва, не изменяется. Однако энергия уменьшилась.

Способы определения фазных и нулевых проводов

То же самое относится и к электричеству: количество тока, которое течет к потребителю, равно массовому потоку, который также должен снова течь. В случае электрических установок упоминаются приток от резерва к «фазе крыльчатки» и «нейтральный» отток. Рабочее колесо называется «нагрузкой» или «сопротивлением». Быстро становится ясно, что электричество действительно не потеряно, даже если энергия потребляется.



До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора , стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым "трёхфазным" трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор - это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу

Потребляемый электрический ток в домохозяйстве = энергия = мощность. Но какая энергия потребляется и что текущий провайдер фактически взимает с него ежемесячные платежи, если количество электроэнергии всегда остается неизменным? Решение: потребляется мощность. Вода в заповеднике имеет более высокую энергию, чем вода в озере. Чтобы снова запустить рабочее колесо, вода должна быть закачана обратно в запас и обогащена энергией.

Фаза и ноль в современной розетке

В примере водного цикла потребляемая энергия соответствует количеству воды, теряемой во времени. В случае электричества энергия рассчитывается как мощность, измеренная в ваттах, раз в час. Вот почему текущий расчет всегда показывает кВтч. Кило стоит тысячу. Если это сейчас включено в течение десяти часов, то через эти десять часов потребляется киловатт-час энергии.


В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:


Бывают маленькие, и не очень мощные, а бывают большие и мощные:



Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза - на свою катушку), из которого уже "бесконтактным" способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, "левые") этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить "нейтраль" у себя на подстанции. А из нейтрали - вывести в жилой дом четвёртый "нулевой провод", вместе с тремя фазными (идущими от условно "правых" концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод - "землю".

Таким образом, из подстанции в итоге выходят три "фазы", "ноль" и "земля" (всего - пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд - получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).

Итак, мы получили все три провода, выходящие из подстанции: "фаза", "ноль" (иногда "ноль" называют ещё "нейтралью") и "земля".
"фаза" - это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
"ноль" - это провод от "нейтрали" на подстанции.
"земля" - это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).

Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу : напряжение в каждую квартиру будет идти одно и то же, а сила тока - тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти "каждому по потребностям" (и проходить через квартирный счётчик, который это всё будет подсчитывать).

Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).

Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два - фазу и ноль или фазу и землю?

Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй - это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему "звезды", когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет "перекос фаз" , и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод "нуля" оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше "перекос фаз", тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что "а он не нужен"...


Тогда зачем нам в доме нужен провод "земли"?

Для того, чтобы "заземлять" корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.

Приборы тоже иногда ломаются.

Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?

Если корпус прибора вы заранее заземлили, то возникнет "ток утечки" (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления - по создавшемуся короткому замыканию фазы на землю).

Этот ток утечки будет немедленно замечен либо "автоматом" стоящим в щитке, либо "Устройством Защитного Отключения" (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.

Почему недостаточно обычного "автомата", и зачем ставят именно УЗО? Потому что у "автомата" и у УЗО разный принцип работы (а ещё, "автомат" срабатывает гораздо позже, чем УЗО).



УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как "автомат" измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то "протекает": где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой - скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от "автомата", который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже "зажарен". Казалось бы, тогда, можно и не заземлять корпусы электроприборов - УЗО же в любом случае "мгновенно" сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно "мгновенно" сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и "земля" нужна, и УЗО нужно ставить.

Поэтому нужны все три провода: "фаза", "ноль" и "земля".

В квартире к каждой розетке подходит тройка проводов "фаза", "ноль", "земля".
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета - всё это называют "слаботочкой", потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую "точку доступа" к электричеству стоит свой отдельный "автомат", подписнанный: "кухня", "зал", "комната", "стиральная машина", и так далее.
(на рисунке ниже: сверху стоит "общий" автомат; после которого стоят подписанные "отдельные" автоматы; зелёный провод - земля, синий - ноль, коричневый - фаза: это стандарт цветового обозначения проводов)



От каждого такого "отдельного" автомата своя, отдельная, тройка проводов уже идёт к "точке доступа": тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..

Наиболее популярно сейчас совмещать "главный" автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между "главным" общим автоматом (который имеет также встроенное УЗО) и остальными, "отдельными", автоматами (синий - ноль, коричневый - фаза, зелёный - земля: это стандарт цветового обозначения проводов):



И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО - это разные устройства):


Каждый "автомат" изготовлен на заводе под определённую максимально допустимую силу тока.

Поэтому он "вырубается", если вы даёте слишком большую нагрузку на "точке доступа" (например, включили слишком много всего мощного в розетки в зале).

Также, автомат "вырубится" в случае "короткого замыкания" (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.

Жизнь человека, при отсутствии правильного заземления электроприборов, автомат без УЗО не спасёт, так как автомат слишком медленно срабатывает (это более грубое устройство, так сказать).

Вроде бы, по этой теме пока всё.

При выполнении работ по обслуживанию и ремонту домашней электросети , установки розеток, выключателей требуется найти фазу и ноль. Это необходимо для безопасности человека и правильного подключения электроприборов. Придуманы простейшие и не дорогие пробники, позволяющие найти фазу без трудностей.

Что это такое фаза и ноль? Давайте попробуем разобраться: по определению фазой или фазовым смещением называют параметр отставания во времени. Применительно к электрическим машинам получается так, допустим мы имеем генератор переменного тока с двумя выводами. Если ни один из этих выводов не заземлен то на них будет присутствовать переменное напряжение, причем значения потенциалов на выводах будут противоположны.

Не совсем понятно? Тогда немного по другому: переменное напряжение потому и называют переменным потому что оно постоянно меняет полярность. То есть изменяется во времени от положительного потенциала к отрицательному и наоборот. Причем такие колебания происходят очень быстро 50 раз в секунду (в некоторых странах 60 раз в секунду).
Возьмем, к примеру, самый обычный трансформатор (для простоты будем считать что он имеет всего лишь одну вторичную обмотку), если его включить в сеть переменного тока то на вторичной обмотке появится напряжение. Так вот напряжение будет присутствовать на обеих концах вторичной обмотки , но потенциалы будут прямо-противоположны, когда на одном выводе «+», то на другом будет «-» и наоборот. Вот это как раз и называется смещение по фазе .

Нетрудно догадаться что понятие фаза приемлемо лишь по отношению к переменному току.

Если на электрической машине один из выводов заземлить, то напряжение останется лишь на одном проводе и будет оно изменяться уже относительно земли. Вот как раз такой провод в электрике и назвали фаза .

Что будет если вдруг мы коснемся фазы? Получится что образуется электрическая цепь между вами и землей и вы в этом случае будете нагрузкой! Думаю нет нужды говорить что это опасно для жизни , поэтому при работе с промышленной сетью нужно уметь определить фазу .

Цветовое обозначение электропроводов

Для удобства монтажа электрические силовые провода маркируются разными цветами. Это должно позволить без приборов определить фазу и ноль. Но на практике цветовая маркировка очень редко соответствует принятой стандартом.

Один из этих проводов обязательно должен иметь голубоватую или синюю окраску. Именно так определяется рабочий нулевой проводник (Ноль) . По нему не идёт ток от источника - он направляется от Вас к источнику. Он вполне безобидный, и если схватиться за него, не прикасаясь ко второму, то ничего страшного и ужасного не случится.

Второй провод, окраска которого может быть любой, за исключением синей, голубой, жёлто-зелёной в полоску, называется фазный проводник (Фаза) .

Третий провод, окрашенный в желто-зеленый цвет, называется (Земля) .

Как определить фазу

Самый простой способ определить фазовый провод это конечно пробник. Выглядит такой пробник как обыкновенная отвертка, но он прозрачный и имеет внутри неоновую лампочку. Его, кстати, так и называют- индикаторная отвертка.

Для того чтобы определить фазу при помощи такой индикаторной отвертки нужно просто прикоснуться ею к проводу, но при этом еще необходимо держать палец на металлической верхушке индикатора. Включаясь таким образом мы создаем электрическую цепь между фазой и землей, но при этом мы не пострадаем так как индикаторная отвертка имеет внутри высокоомный ограничительный резистор.
Наличие фазы можно будет определить по свечению неоновой лампочки внутри индикатора.

Второй способ определить определить фазу это при помощи мультиметра.

Фазовый провод можно определить и мультиметром. Для этого выбираем диапазон измерения переменного напряжения значением выше 220 вольт. К мультиметру подключены два щупа в гнезда «COM» и «V» соответственно.

К одному из щупов прикасаемся пальцем а вторым щупом, который включен в гнездо с маркировкой «V» и прикасаемся им к проводникам. Если вы прикоснулись к фазе, то прибор покажет небольшое значение – 8-15 вольт. При прикосновении к нулевому проводу показания прибора останутся на нуле.

© autonomichouse.ru, 2024
Автономный дом